direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×D12, C42⋊15D6, C6.1022+ 1+4, C3⋊1D42, C4⋊4(S3×D4), C4⋊C4⋊46D6, (C3×D4)⋊9D4, D6⋊5(C2×D4), C4⋊1(C2×D12), C12⋊1(C2×D4), (C4×D4)⋊11S3, (C4×D12)⋊27C2, (D4×C12)⋊13C2, D6⋊D4⋊5C2, C12⋊7D4⋊7C2, D6⋊C4⋊4C22, C22⋊C4⋊45D6, C22⋊2(C2×D12), (C22×C4)⋊14D6, C12⋊D4⋊14C2, C4⋊D12⋊11C2, (C4×C12)⋊18C22, (C2×D4).247D6, (C22×D12)⋊8C2, (C2×C6).93C24, C6.15(C22×D4), C2.14(D4○D12), (C2×D12)⋊16C22, (S3×C23)⋊5C22, C4⋊Dic3⋊58C22, (C22×C12)⋊9C22, C2.17(C22×D12), (C2×C12).158C23, (C6×D4).256C22, (C22×C6).163C23, C23.181(C22×S3), C22.118(S3×C23), (C2×Dic3).39C23, (C22×S3).171C23, (C2×S3×D4)⋊3C2, (C2×C6)⋊1(C2×D4), C2.21(C2×S3×D4), (S3×C2×C4)⋊2C22, (C3×C4⋊C4)⋊58C22, (C2×C3⋊D4)⋊2C22, (C3×C22⋊C4)⋊49C22, (C2×C4).157(C22×S3), SmallGroup(192,1108)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×D12
G = < a,b,c,d | a4=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 1432 in 428 conjugacy classes, 123 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C4×D4, C4×D4, C22≀C2, C4⋊D4, C4⋊1D4, C22×D4, C4⋊Dic3, D6⋊C4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C2×D12, C2×D12, S3×D4, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, D42, C4×D12, C4⋊D12, D6⋊D4, C12⋊D4, C12⋊7D4, D4×C12, C22×D12, C2×S3×D4, D4×D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, D12, C22×S3, C22×D4, 2+ 1+4, C2×D12, S3×D4, S3×C23, D42, C22×D12, C2×S3×D4, D4○D12, D4×D12
(1 43 16 26)(2 44 17 27)(3 45 18 28)(4 46 19 29)(5 47 20 30)(6 48 21 31)(7 37 22 32)(8 38 23 33)(9 39 24 34)(10 40 13 35)(11 41 14 36)(12 42 15 25)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 21)(14 20)(15 19)(16 18)(22 24)(25 29)(26 28)(30 36)(31 35)(32 34)(37 39)(40 48)(41 47)(42 46)(43 45)
G:=sub<Sym(48)| (1,43,16,26)(2,44,17,27)(3,45,18,28)(4,46,19,29)(5,47,20,30)(6,48,21,31)(7,37,22,32)(8,38,23,33)(9,39,24,34)(10,40,13,35)(11,41,14,36)(12,42,15,25), (1,32)(2,33)(3,34)(4,35)(5,36)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,21)(14,20)(15,19)(16,18)(22,24)(25,29)(26,28)(30,36)(31,35)(32,34)(37,39)(40,48)(41,47)(42,46)(43,45)>;
G:=Group( (1,43,16,26)(2,44,17,27)(3,45,18,28)(4,46,19,29)(5,47,20,30)(6,48,21,31)(7,37,22,32)(8,38,23,33)(9,39,24,34)(10,40,13,35)(11,41,14,36)(12,42,15,25), (1,32)(2,33)(3,34)(4,35)(5,36)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,21)(14,20)(15,19)(16,18)(22,24)(25,29)(26,28)(30,36)(31,35)(32,34)(37,39)(40,48)(41,47)(42,46)(43,45) );
G=PermutationGroup([[(1,43,16,26),(2,44,17,27),(3,45,18,28),(4,46,19,29),(5,47,20,30),(6,48,21,31),(7,37,22,32),(8,38,23,33),(9,39,24,34),(10,40,13,35),(11,41,14,36),(12,42,15,25)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,21),(14,20),(15,19),(16,18),(22,24),(25,29),(26,28),(30,36),(31,35),(32,34),(37,39),(40,48),(41,47),(42,46),(43,45)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | ··· | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | D6 | D6 | D6 | D12 | 2+ 1+4 | S3×D4 | D4○D12 |
kernel | D4×D12 | C4×D12 | C4⋊D12 | D6⋊D4 | C12⋊D4 | C12⋊7D4 | D4×C12 | C22×D12 | C2×S3×D4 | C4×D4 | D12 | C3×D4 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | D4 | C6 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 2 | 2 | 1 | 4 | 4 | 1 | 2 | 1 | 2 | 1 | 8 | 1 | 2 | 2 |
Matrix representation of D4×D12 ►in GL6(ℤ)
1 | -2 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | -2 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -2 |
0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(6,Integers())| [1,1,0,0,0,0,-2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,-2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,1] >;
D4×D12 in GAP, Magma, Sage, TeX
D_4\times D_{12}
% in TeX
G:=Group("D4xD12");
// GroupNames label
G:=SmallGroup(192,1108);
// by ID
G=gap.SmallGroup(192,1108);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,675,80,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations