Copied to
clipboard

G = C127D8order 192 = 26·3

1st semidirect product of C12 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C127D8, D41D12, C42.49D6, (C3×D4)⋊8D4, (C4×D4)⋊3S3, C43(D4⋊S3), (D4×C12)⋊3C2, C33(C4⋊D8), C6.52(C2×D8), C4⋊D128C2, C4⋊C4.243D6, C12⋊C823C2, (C2×C12).60D4, C4.13(C2×D12), C12.17(C2×D4), (C2×D4).190D6, C4.9(C4○D12), C6.D830C2, C12.50(C4○D4), C2.8(D4⋊D6), C6.64(C4⋊D4), (C4×C12).86C22, C2.12(C127D4), C6.109(C8⋊C22), (C2×C12).337C23, (C6×D4).232C22, (C2×D12).93C22, (C2×D4⋊S3)⋊7C2, C2.7(C2×D4⋊S3), (C2×C6).468(C2×D4), (C2×C3⋊C8).93C22, (C2×C4).245(C3⋊D4), (C3×C4⋊C4).274C22, (C2×C4).437(C22×S3), C22.149(C2×C3⋊D4), SmallGroup(192,574)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C127D8
C1C3C6C12C2×C12C2×D12C4⋊D12 — C127D8
C3C6C2×C12 — C127D8
C1C22C42C4×D4

Generators and relations for C127D8
 G = < a,b,c | a12=b8=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 504 in 140 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, C12, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C3⋊C8, D12, C2×C12, C2×C12, C3×D4, C3×D4, C22×S3, C22×C6, D4⋊C4, C4⋊C8, C4×D4, C41D4, C2×D8, C2×C3⋊C8, D4⋊S3, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×D12, C2×D12, C22×C12, C6×D4, C4⋊D8, C12⋊C8, C6.D8, C4⋊D12, C2×D4⋊S3, D4×C12, C127D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C4○D4, D12, C3⋊D4, C22×S3, C4⋊D4, C2×D8, C8⋊C22, D4⋊S3, C2×D12, C4○D12, C2×C3⋊D4, C4⋊D8, C127D4, C2×D4⋊S3, D4⋊D6, C127D8

Smallest permutation representation of C127D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 52 69 89 22 38 30 81)(2 51 70 88 23 37 31 80)(3 50 71 87 24 48 32 79)(4 49 72 86 13 47 33 78)(5 60 61 85 14 46 34 77)(6 59 62 96 15 45 35 76)(7 58 63 95 16 44 36 75)(8 57 64 94 17 43 25 74)(9 56 65 93 18 42 26 73)(10 55 66 92 19 41 27 84)(11 54 67 91 20 40 28 83)(12 53 68 90 21 39 29 82)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 19)(14 18)(15 17)(20 24)(21 23)(25 62)(26 61)(27 72)(28 71)(29 70)(30 69)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 96)(44 95)(45 94)(46 93)(47 92)(48 91)(49 84)(50 83)(51 82)(52 81)(53 80)(54 79)(55 78)(56 77)(57 76)(58 75)(59 74)(60 73)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,52,69,89,22,38,30,81)(2,51,70,88,23,37,31,80)(3,50,71,87,24,48,32,79)(4,49,72,86,13,47,33,78)(5,60,61,85,14,46,34,77)(6,59,62,96,15,45,35,76)(7,58,63,95,16,44,36,75)(8,57,64,94,17,43,25,74)(9,56,65,93,18,42,26,73)(10,55,66,92,19,41,27,84)(11,54,67,91,20,40,28,83)(12,53,68,90,21,39,29,82), (2,12)(3,11)(4,10)(5,9)(6,8)(13,19)(14,18)(15,17)(20,24)(21,23)(25,62)(26,61)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,52,69,89,22,38,30,81)(2,51,70,88,23,37,31,80)(3,50,71,87,24,48,32,79)(4,49,72,86,13,47,33,78)(5,60,61,85,14,46,34,77)(6,59,62,96,15,45,35,76)(7,58,63,95,16,44,36,75)(8,57,64,94,17,43,25,74)(9,56,65,93,18,42,26,73)(10,55,66,92,19,41,27,84)(11,54,67,91,20,40,28,83)(12,53,68,90,21,39,29,82), (2,12)(3,11)(4,10)(5,9)(6,8)(13,19)(14,18)(15,17)(20,24)(21,23)(25,62)(26,61)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,52,69,89,22,38,30,81),(2,51,70,88,23,37,31,80),(3,50,71,87,24,48,32,79),(4,49,72,86,13,47,33,78),(5,60,61,85,14,46,34,77),(6,59,62,96,15,45,35,76),(7,58,63,95,16,44,36,75),(8,57,64,94,17,43,25,74),(9,56,65,93,18,42,26,73),(10,55,66,92,19,41,27,84),(11,54,67,91,20,40,28,83),(12,53,68,90,21,39,29,82)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,19),(14,18),(15,17),(20,24),(21,23),(25,62),(26,61),(27,72),(28,71),(29,70),(30,69),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,96),(44,95),(45,94),(46,93),(47,92),(48,91),(49,84),(50,83),(51,82),(52,81),(53,80),(54,79),(55,78),(56,77),(57,76),(58,75),(59,74),(60,73)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E6F6G8A8B8C8D12A12B12C12D12E···12L
order1222222234444444666666688881212121212···12
size11114424242222244422244441212121222224···4

39 irreducible representations

dim11111122222222222444
type+++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D6D8C4○D4C3⋊D4D12C4○D12C8⋊C22D4⋊S3D4⋊D6
kernelC127D8C12⋊C8C6.D8C4⋊D12C2×D4⋊S3D4×C12C4×D4C2×C12C3×D4C42C4⋊C4C2×D4C12C12C2×C4D4C4C6C4C2
# reps11212112211142444122

Matrix representation of C127D8 in GL6(𝔽73)

7200000
0720000
00271900
0004600
0000721
0000720
,
57160000
57570000
0072200
0072100
0000072
0000720
,
100000
0720000
001000
0017200
000001
000010

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,0,0,0,19,46,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[57,57,0,0,0,0,16,57,0,0,0,0,0,0,72,72,0,0,0,0,2,1,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C127D8 in GAP, Magma, Sage, TeX

C_{12}\rtimes_7D_8
% in TeX

G:=Group("C12:7D8");
// GroupNames label

G:=SmallGroup(192,574);
// by ID

G=gap.SmallGroup(192,574);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽