non-abelian, supersoluble, monomial
Aliases: He3⋊2D4, C6.18S32, (C3×C6).3D6, He3⋊3C4⋊1C2, C32⋊1(C3⋊D4), C2.4(C32⋊D6), C3.1(D6⋊S3), (C2×He3).3C22, (C2×C3⋊S3)⋊1S3, (C2×C32⋊C6)⋊1C2, SmallGroup(216,35)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊2D4
G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=c-1, ce=ec, ede=d-1 >
Subgroups: 352 in 62 conjugacy classes, 16 normal (8 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C32, C32, Dic3, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, D12, C3⋊D4, He3, C3×Dic3, S3×C6, C2×C3⋊S3, C32⋊C6, C2×He3, C3⋊D12, He3⋊3C4, C2×C32⋊C6, He3⋊2D4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊D4, S32, D6⋊S3, C32⋊D6, He3⋊2D4
Character table of He3⋊2D4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | |
size | 1 | 1 | 18 | 18 | 2 | 6 | 6 | 12 | 18 | 2 | 6 | 6 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 0 | 2 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -1 | 2 | -1 | 0 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 2 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | -2 | 2 | -1 | 2 | -1 | 0 | 2 | -1 | 2 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | √-3 | -√-3 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ11 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | -2 | 1 | -2 | 1 | -√-3 | 0 | 0 | √-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | -√-3 | √-3 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | -2 | 1 | -2 | 1 | √-3 | 0 | 0 | -√-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ14 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ15 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ16 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from C32⋊D6 |
ρ17 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from C32⋊D6 |
ρ18 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | orthogonal faithful |
ρ19 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | orthogonal faithful |
(1 30 13)(2 14 31)(3 32 15)(4 16 29)(5 18 9)(6 10 19)(7 20 11)(8 12 17)(21 34 28)(22 25 35)(23 36 26)(24 27 33)
(1 5 24)(2 6 21)(3 7 22)(4 8 23)(9 33 13)(10 34 14)(11 35 15)(12 36 16)(17 26 29)(18 27 30)(19 28 31)(20 25 32)
(9 13 33)(10 34 14)(11 15 35)(12 36 16)(17 29 26)(18 27 30)(19 31 28)(20 25 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 4)(2 3)(5 23)(6 22)(7 21)(8 24)(9 36)(10 35)(11 34)(12 33)(13 16)(14 15)(17 27)(18 26)(19 25)(20 28)(29 30)(31 32)
G:=sub<Sym(36)| (1,30,13)(2,14,31)(3,32,15)(4,16,29)(5,18,9)(6,10,19)(7,20,11)(8,12,17)(21,34,28)(22,25,35)(23,36,26)(24,27,33), (1,5,24)(2,6,21)(3,7,22)(4,8,23)(9,33,13)(10,34,14)(11,35,15)(12,36,16)(17,26,29)(18,27,30)(19,28,31)(20,25,32), (9,13,33)(10,34,14)(11,15,35)(12,36,16)(17,29,26)(18,27,30)(19,31,28)(20,25,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4)(2,3)(5,23)(6,22)(7,21)(8,24)(9,36)(10,35)(11,34)(12,33)(13,16)(14,15)(17,27)(18,26)(19,25)(20,28)(29,30)(31,32)>;
G:=Group( (1,30,13)(2,14,31)(3,32,15)(4,16,29)(5,18,9)(6,10,19)(7,20,11)(8,12,17)(21,34,28)(22,25,35)(23,36,26)(24,27,33), (1,5,24)(2,6,21)(3,7,22)(4,8,23)(9,33,13)(10,34,14)(11,35,15)(12,36,16)(17,26,29)(18,27,30)(19,28,31)(20,25,32), (9,13,33)(10,34,14)(11,15,35)(12,36,16)(17,29,26)(18,27,30)(19,31,28)(20,25,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4)(2,3)(5,23)(6,22)(7,21)(8,24)(9,36)(10,35)(11,34)(12,33)(13,16)(14,15)(17,27)(18,26)(19,25)(20,28)(29,30)(31,32) );
G=PermutationGroup([[(1,30,13),(2,14,31),(3,32,15),(4,16,29),(5,18,9),(6,10,19),(7,20,11),(8,12,17),(21,34,28),(22,25,35),(23,36,26),(24,27,33)], [(1,5,24),(2,6,21),(3,7,22),(4,8,23),(9,33,13),(10,34,14),(11,35,15),(12,36,16),(17,26,29),(18,27,30),(19,28,31),(20,25,32)], [(9,13,33),(10,34,14),(11,15,35),(12,36,16),(17,29,26),(18,27,30),(19,31,28),(20,25,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,4),(2,3),(5,23),(6,22),(7,21),(8,24),(9,36),(10,35),(11,34),(12,33),(13,16),(14,15),(17,27),(18,26),(19,25),(20,28),(29,30),(31,32)]])
He3⋊2D4 is a maximal subgroup of
He3⋊2SD16 He3⋊D8 C12⋊S3⋊S3 C12.91S32 C12.86S32 C62.9D6 C62⋊D6
He3⋊2D4 is a maximal quotient of He3⋊3SD16 He3⋊2D8 He3⋊2Q16 C62.3D6 C62.4D6
Matrix representation of He3⋊2D4 ►in GL6(𝔽13)
0 | 0 | 0 | 0 | 12 | 1 |
3 | 3 | 0 | 0 | 11 | 12 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 1 | 0 | 10 | 0 |
0 | 0 | 0 | 1 | 10 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
9 | 0 | 12 | 12 | 0 | 0 |
0 | 4 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 12 | 12 |
0 | 10 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
9 | 9 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 3 | 0 | 0 | 12 | 12 |
3 | 7 | 0 | 0 | 0 | 0 |
6 | 10 | 0 | 0 | 0 | 0 |
10 | 8 | 0 | 0 | 10 | 7 |
5 | 3 | 0 | 0 | 6 | 3 |
10 | 5 | 10 | 7 | 0 | 0 |
8 | 3 | 6 | 3 | 0 | 0 |
7 | 3 | 0 | 0 | 0 | 0 |
10 | 6 | 0 | 0 | 0 | 0 |
3 | 5 | 0 | 0 | 3 | 6 |
12 | 1 | 0 | 0 | 3 | 10 |
3 | 8 | 3 | 6 | 0 | 0 |
4 | 9 | 3 | 10 | 0 | 0 |
G:=sub<GL(6,GF(13))| [0,3,0,1,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,11,4,4,10,10,1,12,0,0,0,0],[0,1,9,0,3,0,12,12,0,4,0,10,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,0,9,0,0,3,0,1,9,0,0,3,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[3,6,10,5,10,8,7,10,8,3,5,3,0,0,0,0,10,6,0,0,0,0,7,3,0,0,10,6,0,0,0,0,7,3,0,0],[7,10,3,12,3,4,3,6,5,1,8,9,0,0,0,0,3,3,0,0,0,0,6,10,0,0,3,3,0,0,0,0,6,10,0,0] >;
He3⋊2D4 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_2D_4
% in TeX
G:=Group("He3:2D4");
// GroupNames label
G:=SmallGroup(216,35);
// by ID
G=gap.SmallGroup(216,35);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,73,201,1444,382,5189,2603]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export