Extensions 1→N→G→Q→1 with N=D14⋊C4 and Q=C2

Direct product G=N×Q with N=D14⋊C4 and Q=C2
dρLabelID
C2×D14⋊C4112C2xD14:C4224,122

Semidirect products G=N:Q with N=D14⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D14⋊C41C2 = C4.D28φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:1C2224,70
D14⋊C42C2 = C23.23D14φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:2C2224,124
D14⋊C43C2 = C287D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:3C2224,125
D14⋊C44C2 = C22⋊D28φ: C2/C1C2 ⊆ Out D14⋊C456D14:C4:4C2224,77
D14⋊C45C2 = D14.D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:5C2224,78
D14⋊C46C2 = Dic7.D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:6C2224,80
D14⋊C47C2 = C22.D28φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:7C2224,81
D14⋊C48C2 = C4⋊D28φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:8C2224,90
D14⋊C49C2 = D7×C22⋊C4φ: C2/C1C2 ⊆ Out D14⋊C456D14:C4:9C2224,75
D14⋊C410C2 = Dic74D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:10C2224,76
D14⋊C411C2 = D14⋊D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:11C2224,79
D14⋊C412C2 = D28⋊C4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:12C2224,88
D14⋊C413C2 = D14.5D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:13C2224,89
D14⋊C414C2 = C23⋊D14φ: C2/C1C2 ⊆ Out D14⋊C456D14:C4:14C2224,132
D14⋊C415C2 = Dic7⋊D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:15C2224,134
D14⋊C416C2 = C28.23D4φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4:16C2224,142
D14⋊C417C2 = C4×D28φ: trivial image112D14:C4:17C2224,68
D14⋊C418C2 = C4×C7⋊D4φ: trivial image112D14:C4:18C2224,123

Non-split extensions G=N.Q with N=D14⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D14⋊C4.1C2 = C422D7φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4.1C2224,71
D14⋊C4.2C2 = D14⋊Q8φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4.2C2224,91
D14⋊C4.3C2 = D142Q8φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4.3C2224,92
D14⋊C4.4C2 = C4⋊C47D7φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4.4C2224,87
D14⋊C4.5C2 = C4⋊C4⋊D7φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4.5C2224,93
D14⋊C4.6C2 = D143Q8φ: C2/C1C2 ⊆ Out D14⋊C4112D14:C4.6C2224,141
D14⋊C4.7C2 = C42⋊D7φ: trivial image112D14:C4.7C2224,67

׿
×
𝔽