# Extensions 1→N→G→Q→1 with N=S3×C10 and Q=C22

Direct product G=N×Q with N=S3×C10 and Q=C22
dρLabelID
S3×C22×C10120S3xC2^2xC10240,206

Semidirect products G=N:Q with N=S3×C10 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1C22 = D5×D12φ: C22/C1C22 ⊆ Out S3×C10604+(S3xC10):1C2^2240,136
(S3×C10)⋊2C22 = C20⋊D6φ: C22/C1C22 ⊆ Out S3×C10604(S3xC10):2C2^2240,138
(S3×C10)⋊3C22 = D5×C3⋊D4φ: C22/C1C22 ⊆ Out S3×C10604(S3xC10):3C2^2240,149
(S3×C10)⋊4C22 = D10⋊D6φ: C22/C1C22 ⊆ Out S3×C10604+(S3xC10):4C2^2240,151
(S3×C10)⋊5C22 = C2×C15⋊D4φ: C22/C2C2 ⊆ Out S3×C10120(S3xC10):5C2^2240,145
(S3×C10)⋊6C22 = C2×C5⋊D12φ: C22/C2C2 ⊆ Out S3×C10120(S3xC10):6C2^2240,147
(S3×C10)⋊7C22 = S3×C5⋊D4φ: C22/C2C2 ⊆ Out S3×C10604(S3xC10):7C2^2240,150
(S3×C10)⋊8C22 = C22×S3×D5φ: C22/C2C2 ⊆ Out S3×C1060(S3xC10):8C2^2240,202
(S3×C10)⋊9C22 = C10×D12φ: C22/C2C2 ⊆ Out S3×C10120(S3xC10):9C2^2240,167
(S3×C10)⋊10C22 = C5×S3×D4φ: C22/C2C2 ⊆ Out S3×C10604(S3xC10):10C2^2240,169
(S3×C10)⋊11C22 = C10×C3⋊D4φ: C22/C2C2 ⊆ Out S3×C10120(S3xC10):11C2^2240,174

Non-split extensions G=N.Q with N=S3×C10 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C10).1C22 = D12⋊D5φ: C22/C1C22 ⊆ Out S3×C101204(S3xC10).1C2^2240,129
(S3×C10).2C22 = D125D5φ: C22/C1C22 ⊆ Out S3×C101204-(S3xC10).2C2^2240,133
(S3×C10).3C22 = C30.C23φ: C22/C1C22 ⊆ Out S3×C101204-(S3xC10).3C2^2240,141
(S3×C10).4C22 = Dic3.D10φ: C22/C1C22 ⊆ Out S3×C101204(S3xC10).4C2^2240,143
(S3×C10).5C22 = D205S3φ: C22/C2C2 ⊆ Out S3×C101204-(S3xC10).5C2^2240,126
(S3×C10).6C22 = S3×Dic10φ: C22/C2C2 ⊆ Out S3×C101204-(S3xC10).6C2^2240,128
(S3×C10).7C22 = D60⋊C2φ: C22/C2C2 ⊆ Out S3×C101204+(S3xC10).7C2^2240,130
(S3×C10).8C22 = D6.D10φ: C22/C2C2 ⊆ Out S3×C101204(S3xC10).8C2^2240,132
(S3×C10).9C22 = C4×S3×D5φ: C22/C2C2 ⊆ Out S3×C10604(S3xC10).9C2^2240,135
(S3×C10).10C22 = S3×D20φ: C22/C2C2 ⊆ Out S3×C10604+(S3xC10).10C2^2240,137
(S3×C10).11C22 = C2×S3×Dic5φ: C22/C2C2 ⊆ Out S3×C10120(S3xC10).11C2^2240,142
(S3×C10).12C22 = C5×C4○D12φ: C22/C2C2 ⊆ Out S3×C101202(S3xC10).12C2^2240,168
(S3×C10).13C22 = C5×D42S3φ: C22/C2C2 ⊆ Out S3×C101204(S3xC10).13C2^2240,170
(S3×C10).14C22 = C5×Q83S3φ: C22/C2C2 ⊆ Out S3×C101204(S3xC10).14C2^2240,172
(S3×C10).15C22 = S3×C2×C20φ: trivial image120(S3xC10).15C2^2240,166
(S3×C10).16C22 = C5×S3×Q8φ: trivial image1204(S3xC10).16C2^2240,171

׿
×
𝔽