Copied to
clipboard

G = C4×C17⋊C4order 272 = 24·17

Direct product of C4 and C17⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×C17⋊C4, C17⋊C42, C682C4, Dic172C4, D34.4C22, C34.3(C2×C4), (C4×D17).6C2, D17.2(C2×C4), C2.2(C2×C17⋊C4), (C2×C17⋊C4).3C2, SmallGroup(272,31)

Series: Derived Chief Lower central Upper central

C1C17 — C4×C17⋊C4
C1C17D17D34C2×C17⋊C4 — C4×C17⋊C4
C17 — C4×C17⋊C4
C1C4

Generators and relations for C4×C17⋊C4
 G = < a,b,c | a4=b17=c4=1, ab=ba, ac=ca, cbc-1=b4 >

17C2
17C2
17C4
17C4
17C22
17C4
17C4
17C4
17C2×C4
17C2×C4
17C2×C4
17C42

Smallest permutation representation of C4×C17⋊C4
On 68 points
Generators in S68
(1 52 18 35)(2 53 19 36)(3 54 20 37)(4 55 21 38)(5 56 22 39)(6 57 23 40)(7 58 24 41)(8 59 25 42)(9 60 26 43)(10 61 27 44)(11 62 28 45)(12 63 29 46)(13 64 30 47)(14 65 31 48)(15 66 32 49)(16 67 33 50)(17 68 34 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 52 18 35)(2 65 34 39)(3 61 33 43)(4 57 32 47)(5 53 31 51)(6 66 30 38)(7 62 29 42)(8 58 28 46)(9 54 27 50)(10 67 26 37)(11 63 25 41)(12 59 24 45)(13 55 23 49)(14 68 22 36)(15 64 21 40)(16 60 20 44)(17 56 19 48)

G:=sub<Sym(68)| (1,52,18,35)(2,53,19,36)(3,54,20,37)(4,55,21,38)(5,56,22,39)(6,57,23,40)(7,58,24,41)(8,59,25,42)(9,60,26,43)(10,61,27,44)(11,62,28,45)(12,63,29,46)(13,64,30,47)(14,65,31,48)(15,66,32,49)(16,67,33,50)(17,68,34,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,52,18,35)(2,65,34,39)(3,61,33,43)(4,57,32,47)(5,53,31,51)(6,66,30,38)(7,62,29,42)(8,58,28,46)(9,54,27,50)(10,67,26,37)(11,63,25,41)(12,59,24,45)(13,55,23,49)(14,68,22,36)(15,64,21,40)(16,60,20,44)(17,56,19,48)>;

G:=Group( (1,52,18,35)(2,53,19,36)(3,54,20,37)(4,55,21,38)(5,56,22,39)(6,57,23,40)(7,58,24,41)(8,59,25,42)(9,60,26,43)(10,61,27,44)(11,62,28,45)(12,63,29,46)(13,64,30,47)(14,65,31,48)(15,66,32,49)(16,67,33,50)(17,68,34,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,52,18,35)(2,65,34,39)(3,61,33,43)(4,57,32,47)(5,53,31,51)(6,66,30,38)(7,62,29,42)(8,58,28,46)(9,54,27,50)(10,67,26,37)(11,63,25,41)(12,59,24,45)(13,55,23,49)(14,68,22,36)(15,64,21,40)(16,60,20,44)(17,56,19,48) );

G=PermutationGroup([[(1,52,18,35),(2,53,19,36),(3,54,20,37),(4,55,21,38),(5,56,22,39),(6,57,23,40),(7,58,24,41),(8,59,25,42),(9,60,26,43),(10,61,27,44),(11,62,28,45),(12,63,29,46),(13,64,30,47),(14,65,31,48),(15,66,32,49),(16,67,33,50),(17,68,34,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,52,18,35),(2,65,34,39),(3,61,33,43),(4,57,32,47),(5,53,31,51),(6,66,30,38),(7,62,29,42),(8,58,28,46),(9,54,27,50),(10,67,26,37),(11,63,25,41),(12,59,24,45),(13,55,23,49),(14,68,22,36),(15,64,21,40),(16,60,20,44),(17,56,19,48)]])

32 conjugacy classes

class 1 2A2B2C4A4B4C···4L17A17B17C17D34A34B34C34D68A···68H
order1222444···4171717173434343468···68
size1117171117···17444444444···4

32 irreducible representations

dim111111444
type+++++
imageC1C2C2C4C4C4C17⋊C4C2×C17⋊C4C4×C17⋊C4
kernelC4×C17⋊C4C4×D17C2×C17⋊C4Dic17C68C17⋊C4C4C2C1
# reps112228448

Matrix representation of C4×C17⋊C4 in GL5(𝔽137)

370000
01000
00100
00010
00001
,
10000
0632763136
01000
00100
00010
,
10000
01000
0136632763
0136174109
0109741136

G:=sub<GL(5,GF(137))| [37,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,63,1,0,0,0,27,0,1,0,0,63,0,0,1,0,136,0,0,0],[1,0,0,0,0,0,1,136,136,109,0,0,63,1,74,0,0,27,74,1,0,0,63,109,136] >;

C4×C17⋊C4 in GAP, Magma, Sage, TeX

C_4\times C_{17}\rtimes C_4
% in TeX

G:=Group("C4xC17:C4");
// GroupNames label

G:=SmallGroup(272,31);
// by ID

G=gap.SmallGroup(272,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,46,5204,1614]);
// Polycyclic

G:=Group<a,b,c|a^4=b^17=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C4×C17⋊C4 in TeX

׿
×
𝔽