Copied to
clipboard

G = D34.4C4order 272 = 24·17

3rd non-split extension by D34 of C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C68.1C4, D34.4C4, C171M4(2), Dic17.5C22, C4.(C17⋊C4), C172C81C2, C34.2(C2×C4), (C4×D17).3C2, C2.4(C2×C17⋊C4), SmallGroup(272,30)

Series: Derived Chief Lower central Upper central

C1C34 — D34.4C4
C1C17C34Dic17C172C8 — D34.4C4
C17C34 — D34.4C4
C1C2C4

Generators and relations for D34.4C4
 G = < a,b | a68=1, b4=a34, bab-1=a55 >

34C2
17C4
17C22
2D17
17C8
17C2×C4
17C8
17M4(2)

Character table of D34.4C4

 class 12A2B4A4B4C8A8B8C8D17A17B17C17D34A34B34C34D68A68B68C68D68E68F68G68H
 size 113421717343434344444444444444444
ρ111111111111111111111111111    trivial
ρ211-1-1111-11-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ311-1-111-11-1111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ4111111-1-1-1-11111111111111111    linear of order 2
ρ5111-1-1-1i-i-ii11111111-1-1-1-1-1-1-1-1    linear of order 4
ρ611-11-1-1ii-i-i1111111111111111    linear of order 4
ρ711-11-1-1-i-iii1111111111111111    linear of order 4
ρ8111-1-1-1-iii-i11111111-1-1-1-1-1-1-1-1    linear of order 4
ρ92-2002i-2i00002222-2-2-2-200000000    complex lifted from M4(2)
ρ102-200-2i2i00002222-2-2-2-200000000    complex lifted from M4(2)
ρ114404000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ1716171317417ζ17111710177176ζ17141712175173ζ17111710177176ζ1715179178172ζ17141712175173ζ1715179178172    orthogonal lifted from C17⋊C4
ρ12440-4000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176171517917817217151791781721714171217517317111710177176171417121751731716171317417171117101771761716171317417    orthogonal lifted from C2×C17⋊C4
ρ134404000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ1715179178172ζ17141712175173ζ17111710177176ζ17141712175173ζ1716171317417ζ17111710177176ζ1716171317417    orthogonal lifted from C17⋊C4
ρ144404000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ17111710177176ζ1715179178172ζ1716171317417ζ1715179178172ζ17141712175173ζ1716171317417ζ17141712175173    orthogonal lifted from C17⋊C4
ρ15440-4000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172171417121751731714171217517317161713174171715179178172171617131741717111710177176171517917817217111710177176    orthogonal lifted from C2×C17⋊C4
ρ16440-4000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173171617131741717161713174171711171017717617141712175173171117101771761715179178172171417121751731715179178172    orthogonal lifted from C2×C17⋊C4
ρ17440-4000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417171117101771761711171017717617151791781721716171317417171517917817217141712175173171617131741717141712175173    orthogonal lifted from C2×C17⋊C4
ρ184404000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ17141712175173ζ1716171317417ζ1715179178172ζ1716171317417ζ17111710177176ζ1715179178172ζ17111710177176    orthogonal lifted from C17⋊C4
ρ194-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ17151791781721714171217517317161713174171711171017717617151791781724ζ17144ζ17124ζ1754ζ173ζ4ζ17144ζ17124ζ1754ζ17343ζ171643ζ171343ζ17443ζ17ζ4ζ17154ζ1794ζ1784ζ172ζ43ζ171643ζ171343ζ17443ζ17ζ4ζ17114ζ17104ζ1774ζ176ζ43ζ171543ζ17943ζ17843ζ172ζ43ζ171143ζ171043ζ17743ζ176    complex faithful
ρ204-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176171517917817217141712175173171617131741717111710177176ζ43ζ171543ζ17943ζ17843ζ172ζ4ζ17154ζ1794ζ1784ζ1724ζ17144ζ17124ζ1754ζ173ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17144ζ17124ζ1754ζ173ζ43ζ171643ζ171343ζ17443ζ17ζ4ζ17114ζ17104ζ1774ζ17643ζ171643ζ171343ζ17443ζ17    complex faithful
ρ214-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173171617131741717111710177176171517917817217141712175173ζ43ζ171643ζ171343ζ17443ζ1743ζ171643ζ171343ζ17443ζ17ζ4ζ17114ζ17104ζ1774ζ1764ζ17144ζ17124ζ1754ζ173ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17154ζ1794ζ1784ζ172ζ4ζ17144ζ17124ζ1754ζ173ζ43ζ171543ζ17943ζ17843ζ172    complex faithful
ρ224-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176171517917817217141712175173171617131741717111710177176ζ4ζ17154ζ1794ζ1784ζ172ζ43ζ171543ζ17943ζ17843ζ172ζ4ζ17144ζ17124ζ1754ζ173ζ4ζ17114ζ17104ζ1774ζ1764ζ17144ζ17124ζ1754ζ17343ζ171643ζ171343ζ17443ζ17ζ43ζ171143ζ171043ζ17743ζ176ζ43ζ171643ζ171343ζ17443ζ17    complex faithful
ρ234-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ1714171217517317161713174171711171017717617151791781721714171217517343ζ171643ζ171343ζ17443ζ17ζ43ζ171643ζ171343ζ17443ζ17ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17144ζ17124ζ1754ζ173ζ4ζ17114ζ17104ζ1774ζ176ζ43ζ171543ζ17943ζ17843ζ1724ζ17144ζ17124ζ1754ζ173ζ4ζ17154ζ1794ζ1784ζ172    complex faithful
ρ244-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172171417121751731716171317417171117101771761715179178172ζ4ζ17144ζ17124ζ1754ζ1734ζ17144ζ17124ζ1754ζ173ζ43ζ171643ζ171343ζ17443ζ17ζ43ζ171543ζ17943ζ17843ζ17243ζ171643ζ171343ζ17443ζ17ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17154ζ1794ζ1784ζ172ζ4ζ17114ζ17104ζ1774ζ176    complex faithful
ρ254-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417171117101771761715179178172171417121751731716171317417ζ4ζ17114ζ17104ζ1774ζ176ζ43ζ171143ζ171043ζ17743ζ176ζ43ζ171543ζ17943ζ17843ζ17243ζ171643ζ171343ζ17443ζ17ζ4ζ17154ζ1794ζ1784ζ172ζ4ζ17144ζ17124ζ1754ζ173ζ43ζ171643ζ171343ζ17443ζ174ζ17144ζ17124ζ1754ζ173    complex faithful
ρ264-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417171117101771761715179178172171417121751731716171317417ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17114ζ17104ζ1774ζ176ζ4ζ17154ζ1794ζ1784ζ172ζ43ζ171643ζ171343ζ17443ζ17ζ43ζ171543ζ17943ζ17843ζ1724ζ17144ζ17124ζ1754ζ17343ζ171643ζ171343ζ17443ζ17ζ4ζ17144ζ17124ζ1754ζ173    complex faithful

Smallest permutation representation of D34.4C4
On 136 points
Generators in S136
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 86 52 103 35 120 18 69)(2 133 17 90 36 99 51 124)(3 112 50 77 37 78 16 111)(4 91 15 132 38 125 49 98)(5 70 48 119 39 104 14 85)(6 117 13 106 40 83 47 72)(7 96 46 93 41 130 12 127)(8 75 11 80 42 109 45 114)(9 122 44 135 43 88 10 101)(19 116 34 73 53 82 68 107)(20 95 67 128 54 129 33 94)(21 74 32 115 55 108 66 81)(22 121 65 102 56 87 31 136)(23 100 30 89 57 134 64 123)(24 79 63 76 58 113 29 110)(25 126 28 131 59 92 62 97)(26 105 61 118 60 71 27 84)

G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,86,52,103,35,120,18,69)(2,133,17,90,36,99,51,124)(3,112,50,77,37,78,16,111)(4,91,15,132,38,125,49,98)(5,70,48,119,39,104,14,85)(6,117,13,106,40,83,47,72)(7,96,46,93,41,130,12,127)(8,75,11,80,42,109,45,114)(9,122,44,135,43,88,10,101)(19,116,34,73,53,82,68,107)(20,95,67,128,54,129,33,94)(21,74,32,115,55,108,66,81)(22,121,65,102,56,87,31,136)(23,100,30,89,57,134,64,123)(24,79,63,76,58,113,29,110)(25,126,28,131,59,92,62,97)(26,105,61,118,60,71,27,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,86,52,103,35,120,18,69)(2,133,17,90,36,99,51,124)(3,112,50,77,37,78,16,111)(4,91,15,132,38,125,49,98)(5,70,48,119,39,104,14,85)(6,117,13,106,40,83,47,72)(7,96,46,93,41,130,12,127)(8,75,11,80,42,109,45,114)(9,122,44,135,43,88,10,101)(19,116,34,73,53,82,68,107)(20,95,67,128,54,129,33,94)(21,74,32,115,55,108,66,81)(22,121,65,102,56,87,31,136)(23,100,30,89,57,134,64,123)(24,79,63,76,58,113,29,110)(25,126,28,131,59,92,62,97)(26,105,61,118,60,71,27,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,86,52,103,35,120,18,69),(2,133,17,90,36,99,51,124),(3,112,50,77,37,78,16,111),(4,91,15,132,38,125,49,98),(5,70,48,119,39,104,14,85),(6,117,13,106,40,83,47,72),(7,96,46,93,41,130,12,127),(8,75,11,80,42,109,45,114),(9,122,44,135,43,88,10,101),(19,116,34,73,53,82,68,107),(20,95,67,128,54,129,33,94),(21,74,32,115,55,108,66,81),(22,121,65,102,56,87,31,136),(23,100,30,89,57,134,64,123),(24,79,63,76,58,113,29,110),(25,126,28,131,59,92,62,97),(26,105,61,118,60,71,27,84)]])

Matrix representation of D34.4C4 in GL6(𝔽137)

3700000
1331000000
001121386
00518939101
00369710085
00527252136
,
1291260000
5980000
0061201826
0076472641
0070619624
0024966170

G:=sub<GL(6,GF(137))| [37,133,0,0,0,0,0,100,0,0,0,0,0,0,1,51,36,52,0,0,12,89,97,72,0,0,13,39,100,52,0,0,86,101,85,136],[129,59,0,0,0,0,126,8,0,0,0,0,0,0,61,76,70,24,0,0,20,47,61,96,0,0,18,26,96,61,0,0,26,41,24,70] >;

D34.4C4 in GAP, Magma, Sage, TeX

D_{34}._4C_4
% in TeX

G:=Group("D34.4C4");
// GroupNames label

G:=SmallGroup(272,30);
// by ID

G=gap.SmallGroup(272,30);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,101,46,42,5204,1614]);
// Polycyclic

G:=Group<a,b|a^68=1,b^4=a^34,b*a*b^-1=a^55>;
// generators/relations

Export

Subgroup lattice of D34.4C4 in TeX
Character table of D34.4C4 in TeX

׿
×
𝔽