Copied to
clipboard

G = C68⋊C4order 272 = 24·17

1st semidirect product of C68 and C4 acting faithfully

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C681C4, D17.Q8, D17.1D4, Dic173C4, D34.5C22, C17⋊(C4⋊C4), C4⋊(C17⋊C4), C34.4(C2×C4), (C4×D17).4C2, C2.5(C2×C17⋊C4), (C2×C17⋊C4).1C2, SmallGroup(272,32)

Series: Derived Chief Lower central Upper central

C1C34 — C68⋊C4
C1C17D17D34C2×C17⋊C4 — C68⋊C4
C17C34 — C68⋊C4
C1C2C4

Generators and relations for C68⋊C4
 G = < a,b | a68=b4=1, bab-1=a55 >

17C2
17C2
17C4
17C22
34C4
34C4
17C2×C4
17C2×C4
17C2×C4
2C17⋊C4
2C17⋊C4
17C4⋊C4

Character table of C68⋊C4

 class 12A2B2C4A4B4C4D4E4F17A17B17C17D34A34B34C34D68A68B68C68D68E68F68G68H
 size 111717234343434344444444444444444
ρ111111111111111111111111111    trivial
ρ21111-1-111-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ311111-1-1-1-111111111111111111    linear of order 2
ρ41111-11-1-11-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ511-1-1-1ii-i-i111111111-1-1-1-1-1-1-1-1    linear of order 4
ρ611-1-11-ii-ii-11111111111111111    linear of order 4
ρ711-1-1-1-i-iii111111111-1-1-1-1-1-1-1-1    linear of order 4
ρ811-1-11i-ii-i-11111111111111111    linear of order 4
ρ92-22-20000002222-2-2-2-200000000    orthogonal lifted from D4
ρ102-2-220000002222-2-2-2-200000000    symplectic lifted from Q8, Schur index 2
ρ114400400000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ1716171317417ζ17111710177176ζ17141712175173ζ17111710177176ζ1715179178172ζ17141712175173ζ1715179178172    orthogonal lifted from C17⋊C4
ρ124400400000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ1715179178172ζ17141712175173ζ17111710177176ζ17141712175173ζ1716171317417ζ17111710177176ζ1716171317417    orthogonal lifted from C17⋊C4
ρ134400400000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ17111710177176ζ1715179178172ζ1716171317417ζ1715179178172ζ17141712175173ζ1716171317417ζ17141712175173    orthogonal lifted from C17⋊C4
ρ144400-400000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173171617131741717161713174171711171017717617141712175173171117101771761715179178172171417121751731715179178172    orthogonal lifted from C2×C17⋊C4
ρ154400-400000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417171117101771761711171017717617151791781721716171317417171517917817217141712175173171617131741717141712175173    orthogonal lifted from C2×C17⋊C4
ρ164400-400000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172171417121751731714171217517317161713174171715179178172171617131741717111710177176171517917817217111710177176    orthogonal lifted from C2×C17⋊C4
ρ174400400000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ17141712175173ζ1716171317417ζ1715179178172ζ1716171317417ζ17111710177176ζ1715179178172ζ17111710177176    orthogonal lifted from C17⋊C4
ρ184400-400000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176171517917817217151791781721714171217517317111710177176171417121751731716171317417171117101771761716171317417    orthogonal lifted from C2×C17⋊C4
ρ194-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ17151791781721714171217517317161713174171711171017717617151791781724ζ17144ζ17124ζ1754ζ173ζ4ζ17144ζ17124ζ1754ζ17343ζ171643ζ171343ζ17443ζ17ζ4ζ17154ζ1794ζ1784ζ172ζ43ζ171643ζ171343ζ17443ζ17ζ4ζ17114ζ17104ζ1774ζ176ζ43ζ171543ζ17943ζ17843ζ172ζ43ζ171143ζ171043ζ17743ζ176    complex faithful
ρ204-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176171517917817217141712175173171617131741717111710177176ζ43ζ171543ζ17943ζ17843ζ172ζ4ζ17154ζ1794ζ1784ζ1724ζ17144ζ17124ζ1754ζ173ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17144ζ17124ζ1754ζ173ζ43ζ171643ζ171343ζ17443ζ17ζ4ζ17114ζ17104ζ1774ζ17643ζ171643ζ171343ζ17443ζ17    complex faithful
ρ214-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173171617131741717111710177176171517917817217141712175173ζ43ζ171643ζ171343ζ17443ζ1743ζ171643ζ171343ζ17443ζ17ζ4ζ17114ζ17104ζ1774ζ1764ζ17144ζ17124ζ1754ζ173ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17154ζ1794ζ1784ζ172ζ4ζ17144ζ17124ζ1754ζ173ζ43ζ171543ζ17943ζ17843ζ172    complex faithful
ρ224-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176171517917817217141712175173171617131741717111710177176ζ4ζ17154ζ1794ζ1784ζ172ζ43ζ171543ζ17943ζ17843ζ172ζ4ζ17144ζ17124ζ1754ζ173ζ4ζ17114ζ17104ζ1774ζ1764ζ17144ζ17124ζ1754ζ17343ζ171643ζ171343ζ17443ζ17ζ43ζ171143ζ171043ζ17743ζ176ζ43ζ171643ζ171343ζ17443ζ17    complex faithful
ρ234-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ1714171217517317161713174171711171017717617151791781721714171217517343ζ171643ζ171343ζ17443ζ17ζ43ζ171643ζ171343ζ17443ζ17ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17144ζ17124ζ1754ζ173ζ4ζ17114ζ17104ζ1774ζ176ζ43ζ171543ζ17943ζ17843ζ1724ζ17144ζ17124ζ1754ζ173ζ4ζ17154ζ1794ζ1784ζ172    complex faithful
ρ244-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172171417121751731716171317417171117101771761715179178172ζ4ζ17144ζ17124ζ1754ζ1734ζ17144ζ17124ζ1754ζ173ζ43ζ171643ζ171343ζ17443ζ17ζ43ζ171543ζ17943ζ17843ζ17243ζ171643ζ171343ζ17443ζ17ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17154ζ1794ζ1784ζ172ζ4ζ17114ζ17104ζ1774ζ176    complex faithful
ρ254-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417171117101771761715179178172171417121751731716171317417ζ4ζ17114ζ17104ζ1774ζ176ζ43ζ171143ζ171043ζ17743ζ176ζ43ζ171543ζ17943ζ17843ζ17243ζ171643ζ171343ζ17443ζ17ζ4ζ17154ζ1794ζ1784ζ172ζ4ζ17144ζ17124ζ1754ζ173ζ43ζ171643ζ171343ζ17443ζ174ζ17144ζ17124ζ1754ζ173    complex faithful
ρ264-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417171117101771761715179178172171417121751731716171317417ζ43ζ171143ζ171043ζ17743ζ176ζ4ζ17114ζ17104ζ1774ζ176ζ4ζ17154ζ1794ζ1784ζ172ζ43ζ171643ζ171343ζ17443ζ17ζ43ζ171543ζ17943ζ17843ζ1724ζ17144ζ17124ζ1754ζ17343ζ171643ζ171343ζ17443ζ17ζ4ζ17144ζ17124ζ1754ζ173    complex faithful

Smallest permutation representation of C68⋊C4
On 68 points
Generators in S68
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 52)(2 31 34 39)(3 10 67 26)(4 57 32 13)(5 36 65 68)(6 15 30 55)(7 62 63 42)(8 41 28 29)(9 20 61 16)(11 46 59 58)(12 25 24 45)(14 51 22 19)(17 56 53 48)(18 35)(21 40 49 64)(23 66 47 38)(27 50 43 54)(33 60 37 44)

G:=sub<Sym(68)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,52)(2,31,34,39)(3,10,67,26)(4,57,32,13)(5,36,65,68)(6,15,30,55)(7,62,63,42)(8,41,28,29)(9,20,61,16)(11,46,59,58)(12,25,24,45)(14,51,22,19)(17,56,53,48)(18,35)(21,40,49,64)(23,66,47,38)(27,50,43,54)(33,60,37,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,52)(2,31,34,39)(3,10,67,26)(4,57,32,13)(5,36,65,68)(6,15,30,55)(7,62,63,42)(8,41,28,29)(9,20,61,16)(11,46,59,58)(12,25,24,45)(14,51,22,19)(17,56,53,48)(18,35)(21,40,49,64)(23,66,47,38)(27,50,43,54)(33,60,37,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,52),(2,31,34,39),(3,10,67,26),(4,57,32,13),(5,36,65,68),(6,15,30,55),(7,62,63,42),(8,41,28,29),(9,20,61,16),(11,46,59,58),(12,25,24,45),(14,51,22,19),(17,56,53,48),(18,35),(21,40,49,64),(23,66,47,38),(27,50,43,54),(33,60,37,44)]])

Matrix representation of C68⋊C4 in GL4(𝔽137) generated by

5311312299
774873107
11639106116
1019911328
,
371146142
5327876
11127111110
4371399
G:=sub<GL(4,GF(137))| [53,77,116,101,113,48,39,99,122,73,106,113,99,107,116,28],[37,53,111,43,114,27,27,7,61,8,111,13,42,76,110,99] >;

C68⋊C4 in GAP, Magma, Sage, TeX

C_{68}\rtimes C_4
% in TeX

G:=Group("C68:C4");
// GroupNames label

G:=SmallGroup(272,32);
// by ID

G=gap.SmallGroup(272,32);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,101,46,5204,1614]);
// Polycyclic

G:=Group<a,b|a^68=b^4=1,b*a*b^-1=a^55>;
// generators/relations

Export

Subgroup lattice of C68⋊C4 in TeX
Character table of C68⋊C4 in TeX

׿
×
𝔽