direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D5×C27, C5⋊C54, C45.C6, C135⋊3C2, C15.C18, C9.(C3×D5), C3.(C9×D5), (C9×D5).C3, (C3×D5).C9, SmallGroup(270,2)
Series: Derived ►Chief ►Lower central ►Upper central
| C5 — D5×C27 |
Generators and relations for D5×C27
G = < a,b,c | a27=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)
(1 28 130 62 91)(2 29 131 63 92)(3 30 132 64 93)(4 31 133 65 94)(5 32 134 66 95)(6 33 135 67 96)(7 34 109 68 97)(8 35 110 69 98)(9 36 111 70 99)(10 37 112 71 100)(11 38 113 72 101)(12 39 114 73 102)(13 40 115 74 103)(14 41 116 75 104)(15 42 117 76 105)(16 43 118 77 106)(17 44 119 78 107)(18 45 120 79 108)(19 46 121 80 82)(20 47 122 81 83)(21 48 123 55 84)(22 49 124 56 85)(23 50 125 57 86)(24 51 126 58 87)(25 52 127 59 88)(26 53 128 60 89)(27 54 129 61 90)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 82)(20 83)(21 84)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 62)(29 63)(30 64)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 81)(48 55)(49 56)(50 57)(51 58)(52 59)(53 60)(54 61)
G:=sub<Sym(135)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135), (1,28,130,62,91)(2,29,131,63,92)(3,30,132,64,93)(4,31,133,65,94)(5,32,134,66,95)(6,33,135,67,96)(7,34,109,68,97)(8,35,110,69,98)(9,36,111,70,99)(10,37,112,71,100)(11,38,113,72,101)(12,39,114,73,102)(13,40,115,74,103)(14,41,116,75,104)(15,42,117,76,105)(16,43,118,77,106)(17,44,119,78,107)(18,45,120,79,108)(19,46,121,80,82)(20,47,122,81,83)(21,48,123,55,84)(22,49,124,56,85)(23,50,125,57,86)(24,51,126,58,87)(25,52,127,59,88)(26,53,128,60,89)(27,54,129,61,90), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,62)(29,63)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,55)(49,56)(50,57)(51,58)(52,59)(53,60)(54,61)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135), (1,28,130,62,91)(2,29,131,63,92)(3,30,132,64,93)(4,31,133,65,94)(5,32,134,66,95)(6,33,135,67,96)(7,34,109,68,97)(8,35,110,69,98)(9,36,111,70,99)(10,37,112,71,100)(11,38,113,72,101)(12,39,114,73,102)(13,40,115,74,103)(14,41,116,75,104)(15,42,117,76,105)(16,43,118,77,106)(17,44,119,78,107)(18,45,120,79,108)(19,46,121,80,82)(20,47,122,81,83)(21,48,123,55,84)(22,49,124,56,85)(23,50,125,57,86)(24,51,126,58,87)(25,52,127,59,88)(26,53,128,60,89)(27,54,129,61,90), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,62)(29,63)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,55)(49,56)(50,57)(51,58)(52,59)(53,60)(54,61) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)], [(1,28,130,62,91),(2,29,131,63,92),(3,30,132,64,93),(4,31,133,65,94),(5,32,134,66,95),(6,33,135,67,96),(7,34,109,68,97),(8,35,110,69,98),(9,36,111,70,99),(10,37,112,71,100),(11,38,113,72,101),(12,39,114,73,102),(13,40,115,74,103),(14,41,116,75,104),(15,42,117,76,105),(16,43,118,77,106),(17,44,119,78,107),(18,45,120,79,108),(19,46,121,80,82),(20,47,122,81,83),(21,48,123,55,84),(22,49,124,56,85),(23,50,125,57,86),(24,51,126,58,87),(25,52,127,59,88),(26,53,128,60,89),(27,54,129,61,90)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,82),(20,83),(21,84),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,62),(29,63),(30,64),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,81),(48,55),(49,56),(50,57),(51,58),(52,59),(53,60),(54,61)]])
108 conjugacy classes
| class | 1 | 2 | 3A | 3B | 5A | 5B | 6A | 6B | 9A | ··· | 9F | 15A | 15B | 15C | 15D | 18A | ··· | 18F | 27A | ··· | 27R | 45A | ··· | 45L | 54A | ··· | 54R | 135A | ··· | 135AJ |
| order | 1 | 2 | 3 | 3 | 5 | 5 | 6 | 6 | 9 | ··· | 9 | 15 | 15 | 15 | 15 | 18 | ··· | 18 | 27 | ··· | 27 | 45 | ··· | 45 | 54 | ··· | 54 | 135 | ··· | 135 |
| size | 1 | 5 | 1 | 1 | 2 | 2 | 5 | 5 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 1 | ··· | 1 | 2 | ··· | 2 | 5 | ··· | 5 | 2 | ··· | 2 |
108 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| type | + | + | + | |||||||||
| image | C1 | C2 | C3 | C6 | C9 | C18 | C27 | C54 | D5 | C3×D5 | C9×D5 | D5×C27 |
| kernel | D5×C27 | C135 | C9×D5 | C45 | C3×D5 | C15 | D5 | C5 | C27 | C9 | C3 | C1 |
| # reps | 1 | 1 | 2 | 2 | 6 | 6 | 18 | 18 | 2 | 4 | 12 | 36 |
Matrix representation of D5×C27 ►in GL2(𝔽271) generated by
| 158 | 0 |
| 0 | 158 |
| 0 | 1 |
| 270 | 254 |
| 0 | 1 |
| 1 | 0 |
G:=sub<GL(2,GF(271))| [158,0,0,158],[0,270,1,254],[0,1,1,0] >;
D5×C27 in GAP, Magma, Sage, TeX
D_5\times C_{27} % in TeX
G:=Group("D5xC27"); // GroupNames label
G:=SmallGroup(270,2);
// by ID
G=gap.SmallGroup(270,2);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-5,36,57,5404]);
// Polycyclic
G:=Group<a,b,c|a^27=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export