Copied to
clipboard

G = D5×C27order 270 = 2·33·5

Direct product of C27 and D5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D5×C27, C5⋊C54, C45.C6, C1353C2, C15.C18, C9.(C3×D5), C3.(C9×D5), (C9×D5).C3, (C3×D5).C9, SmallGroup(270,2)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C27
C1C5C15C45C135 — D5×C27
C5 — D5×C27
C1C27

Generators and relations for D5×C27
 G = < a,b,c | a27=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C6
5C18
5C54

Smallest permutation representation of D5×C27
On 135 points
Generators in S135
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)
(1 28 130 62 91)(2 29 131 63 92)(3 30 132 64 93)(4 31 133 65 94)(5 32 134 66 95)(6 33 135 67 96)(7 34 109 68 97)(8 35 110 69 98)(9 36 111 70 99)(10 37 112 71 100)(11 38 113 72 101)(12 39 114 73 102)(13 40 115 74 103)(14 41 116 75 104)(15 42 117 76 105)(16 43 118 77 106)(17 44 119 78 107)(18 45 120 79 108)(19 46 121 80 82)(20 47 122 81 83)(21 48 123 55 84)(22 49 124 56 85)(23 50 125 57 86)(24 51 126 58 87)(25 52 127 59 88)(26 53 128 60 89)(27 54 129 61 90)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 82)(20 83)(21 84)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 62)(29 63)(30 64)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 81)(48 55)(49 56)(50 57)(51 58)(52 59)(53 60)(54 61)

G:=sub<Sym(135)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135), (1,28,130,62,91)(2,29,131,63,92)(3,30,132,64,93)(4,31,133,65,94)(5,32,134,66,95)(6,33,135,67,96)(7,34,109,68,97)(8,35,110,69,98)(9,36,111,70,99)(10,37,112,71,100)(11,38,113,72,101)(12,39,114,73,102)(13,40,115,74,103)(14,41,116,75,104)(15,42,117,76,105)(16,43,118,77,106)(17,44,119,78,107)(18,45,120,79,108)(19,46,121,80,82)(20,47,122,81,83)(21,48,123,55,84)(22,49,124,56,85)(23,50,125,57,86)(24,51,126,58,87)(25,52,127,59,88)(26,53,128,60,89)(27,54,129,61,90), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,62)(29,63)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,55)(49,56)(50,57)(51,58)(52,59)(53,60)(54,61)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135), (1,28,130,62,91)(2,29,131,63,92)(3,30,132,64,93)(4,31,133,65,94)(5,32,134,66,95)(6,33,135,67,96)(7,34,109,68,97)(8,35,110,69,98)(9,36,111,70,99)(10,37,112,71,100)(11,38,113,72,101)(12,39,114,73,102)(13,40,115,74,103)(14,41,116,75,104)(15,42,117,76,105)(16,43,118,77,106)(17,44,119,78,107)(18,45,120,79,108)(19,46,121,80,82)(20,47,122,81,83)(21,48,123,55,84)(22,49,124,56,85)(23,50,125,57,86)(24,51,126,58,87)(25,52,127,59,88)(26,53,128,60,89)(27,54,129,61,90), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,62)(29,63)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,55)(49,56)(50,57)(51,58)(52,59)(53,60)(54,61) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)], [(1,28,130,62,91),(2,29,131,63,92),(3,30,132,64,93),(4,31,133,65,94),(5,32,134,66,95),(6,33,135,67,96),(7,34,109,68,97),(8,35,110,69,98),(9,36,111,70,99),(10,37,112,71,100),(11,38,113,72,101),(12,39,114,73,102),(13,40,115,74,103),(14,41,116,75,104),(15,42,117,76,105),(16,43,118,77,106),(17,44,119,78,107),(18,45,120,79,108),(19,46,121,80,82),(20,47,122,81,83),(21,48,123,55,84),(22,49,124,56,85),(23,50,125,57,86),(24,51,126,58,87),(25,52,127,59,88),(26,53,128,60,89),(27,54,129,61,90)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,82),(20,83),(21,84),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,62),(29,63),(30,64),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,81),(48,55),(49,56),(50,57),(51,58),(52,59),(53,60),(54,61)]])

108 conjugacy classes

class 1  2 3A3B5A5B6A6B9A···9F15A15B15C15D18A···18F27A···27R45A···45L54A···54R135A···135AJ
order123355669···91515151518···1827···2745···4554···54135···135
size151122551···122225···51···12···25···52···2

108 irreducible representations

dim111111112222
type+++
imageC1C2C3C6C9C18C27C54D5C3×D5C9×D5D5×C27
kernelD5×C27C135C9×D5C45C3×D5C15D5C5C27C9C3C1
# reps1122661818241236

Matrix representation of D5×C27 in GL2(𝔽271) generated by

1580
0158
,
01
270254
,
01
10
G:=sub<GL(2,GF(271))| [158,0,0,158],[0,270,1,254],[0,1,1,0] >;

D5×C27 in GAP, Magma, Sage, TeX

D_5\times C_{27}
% in TeX

G:=Group("D5xC27");
// GroupNames label

G:=SmallGroup(270,2);
// by ID

G=gap.SmallGroup(270,2);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-5,36,57,5404]);
// Polycyclic

G:=Group<a,b,c|a^27=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C27 in TeX

׿
×
𝔽