extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊(C2×Dic3) = S3×A4⋊C4 | φ: C2×Dic3/C2 → D6 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):(C2xDic3) | 288,856 |
(C2×C6)⋊2(C2×Dic3) = C6×A4⋊C4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C2×C6 | 72 | | (C2xC6):2(C2xDic3) | 288,905 |
(C2×C6)⋊3(C2×Dic3) = C2×C6.7S4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C2×C6 | 72 | | (C2xC6):3(C2xDic3) | 288,916 |
(C2×C6)⋊4(C2×Dic3) = S3×C6.D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):4(C2xDic3) | 288,616 |
(C2×C6)⋊5(C2×Dic3) = C62.115C23 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):5(C2xDic3) | 288,621 |
(C2×C6)⋊6(C2×Dic3) = D4×C3⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6):6(C2xDic3) | 288,791 |
(C2×C6)⋊7(C2×Dic3) = C3×D4×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):7(C2xDic3) | 288,705 |
(C2×C6)⋊8(C2×Dic3) = Dic3×C3⋊D4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):8(C2xDic3) | 288,620 |
(C2×C6)⋊9(C2×Dic3) = C22×S3×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):9(C2xDic3) | 288,969 |
(C2×C6)⋊10(C2×Dic3) = C6×C6.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):10(C2xDic3) | 288,723 |
(C2×C6)⋊11(C2×Dic3) = C2×C62⋊5C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6):11(C2xDic3) | 288,809 |
(C2×C6)⋊12(C2×Dic3) = C23×C3⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6):12(C2xDic3) | 288,1016 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).(C2×Dic3) = C2×C6.S4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C2×C6 | 72 | | (C2xC6).(C2xDic3) | 288,341 |
(C2×C6).2(C2×Dic3) = D4×Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).2(C2xDic3) | 288,144 |
(C2×C6).3(C2×Dic3) = D4.Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).3(C2xDic3) | 288,158 |
(C2×C6).4(C2×Dic3) = C12.D12 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).4(C2xDic3) | 288,206 |
(C2×C6).5(C2×Dic3) = C12.14D12 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).5(C2xDic3) | 288,208 |
(C2×C6).6(C2×Dic3) = C62.31D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).6(C2xDic3) | 288,228 |
(C2×C6).7(C2×Dic3) = S3×C4.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).7(C2xDic3) | 288,461 |
(C2×C6).8(C2×Dic3) = D12.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).8(C2xDic3) | 288,463 |
(C2×C6).9(C2×Dic3) = C62.97C23 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).9(C2xDic3) | 288,603 |
(C2×C6).10(C2×Dic3) = D4.(C3⋊Dic3) | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).10(C2xDic3) | 288,805 |
(C2×C6).11(C2×Dic3) = C3×D4.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).11(C2xDic3) | 288,719 |
(C2×C6).12(C2×Dic3) = Dic3×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).12(C2xDic3) | 288,200 |
(C2×C6).13(C2×Dic3) = C3⋊C8⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).13(C2xDic3) | 288,202 |
(C2×C6).14(C2×Dic3) = C12.77D12 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).14(C2xDic3) | 288,204 |
(C2×C6).15(C2×Dic3) = C12.81D12 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).15(C2xDic3) | 288,219 |
(C2×C6).16(C2×Dic3) = C62.6Q8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).16(C2xDic3) | 288,227 |
(C2×C6).17(C2×Dic3) = C2×S3×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).17(C2xDic3) | 288,460 |
(C2×C6).18(C2×Dic3) = D12.2Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).18(C2xDic3) | 288,462 |
(C2×C6).19(C2×Dic3) = C2×D6.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).19(C2xDic3) | 288,467 |
(C2×C6).20(C2×Dic3) = C2×Dic32 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).20(C2xDic3) | 288,602 |
(C2×C6).21(C2×Dic3) = C2×D6⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).21(C2xDic3) | 288,608 |
(C2×C6).22(C2×Dic3) = C2×Dic3⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).22(C2xDic3) | 288,613 |
(C2×C6).23(C2×Dic3) = C3×C12.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).23(C2xDic3) | 288,267 |
(C2×C6).24(C2×Dic3) = C3×C23.7D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).24(C2xDic3) | 288,268 |
(C2×C6).25(C2×Dic3) = C3×C12.10D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).25(C2xDic3) | 288,270 |
(C2×C6).26(C2×Dic3) = C6×C4.Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).26(C2xDic3) | 288,692 |
(C2×C6).27(C2×Dic3) = C3×C23.26D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).27(C2xDic3) | 288,697 |
(C2×C6).28(C2×Dic3) = C4×C9⋊C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).28(C2xDic3) | 288,9 |
(C2×C6).29(C2×Dic3) = C42.D9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).29(C2xDic3) | 288,10 |
(C2×C6).30(C2×Dic3) = C36⋊C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).30(C2xDic3) | 288,11 |
(C2×C6).31(C2×Dic3) = C36.55D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).31(C2xDic3) | 288,37 |
(C2×C6).32(C2×Dic3) = C18.C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).32(C2xDic3) | 288,38 |
(C2×C6).33(C2×Dic3) = C36.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).33(C2xDic3) | 288,39 |
(C2×C6).34(C2×Dic3) = C23⋊2Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).34(C2xDic3) | 288,41 |
(C2×C6).35(C2×Dic3) = C36.9D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).35(C2xDic3) | 288,42 |
(C2×C6).36(C2×Dic3) = C22×C9⋊C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).36(C2xDic3) | 288,130 |
(C2×C6).37(C2×Dic3) = C2×C4.Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).37(C2xDic3) | 288,131 |
(C2×C6).38(C2×Dic3) = C2×C4×Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).38(C2xDic3) | 288,132 |
(C2×C6).39(C2×Dic3) = C2×C4⋊Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).39(C2xDic3) | 288,135 |
(C2×C6).40(C2×Dic3) = C23.26D18 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).40(C2xDic3) | 288,136 |
(C2×C6).41(C2×Dic3) = C2×C18.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).41(C2xDic3) | 288,162 |
(C2×C6).42(C2×Dic3) = C4×C32⋊4C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).42(C2xDic3) | 288,277 |
(C2×C6).43(C2×Dic3) = C122.C2 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).43(C2xDic3) | 288,278 |
(C2×C6).44(C2×Dic3) = C12.57D12 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).44(C2xDic3) | 288,279 |
(C2×C6).45(C2×Dic3) = C62⋊7C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).45(C2xDic3) | 288,305 |
(C2×C6).46(C2×Dic3) = C62.15Q8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).46(C2xDic3) | 288,306 |
(C2×C6).47(C2×Dic3) = (C6×D4).S3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).47(C2xDic3) | 288,308 |
(C2×C6).48(C2×Dic3) = C62.38D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).48(C2xDic3) | 288,309 |
(C2×C6).49(C2×Dic3) = (C6×C12).C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).49(C2xDic3) | 288,311 |
(C2×C6).50(C2×Dic3) = C23×Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).50(C2xDic3) | 288,365 |
(C2×C6).51(C2×Dic3) = C22×C32⋊4C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).51(C2xDic3) | 288,777 |
(C2×C6).52(C2×Dic3) = C2×C12.58D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).52(C2xDic3) | 288,778 |
(C2×C6).53(C2×Dic3) = C2×C4×C3⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).53(C2xDic3) | 288,779 |
(C2×C6).54(C2×Dic3) = C2×C12⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).54(C2xDic3) | 288,782 |
(C2×C6).55(C2×Dic3) = C62.247C23 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).55(C2xDic3) | 288,783 |
(C2×C6).56(C2×Dic3) = C12×C3⋊C8 | central extension (φ=1) | 96 | | (C2xC6).56(C2xDic3) | 288,236 |
(C2×C6).57(C2×Dic3) = C3×C42.S3 | central extension (φ=1) | 96 | | (C2xC6).57(C2xDic3) | 288,237 |
(C2×C6).58(C2×Dic3) = C3×C12⋊C8 | central extension (φ=1) | 96 | | (C2xC6).58(C2xDic3) | 288,238 |
(C2×C6).59(C2×Dic3) = C3×C12.55D4 | central extension (φ=1) | 48 | | (C2xC6).59(C2xDic3) | 288,264 |
(C2×C6).60(C2×Dic3) = C3×C6.C42 | central extension (φ=1) | 96 | | (C2xC6).60(C2xDic3) | 288,265 |
(C2×C6).61(C2×Dic3) = C2×C6×C3⋊C8 | central extension (φ=1) | 96 | | (C2xC6).61(C2xDic3) | 288,691 |
(C2×C6).62(C2×Dic3) = Dic3×C2×C12 | central extension (φ=1) | 96 | | (C2xC6).62(C2xDic3) | 288,693 |
(C2×C6).63(C2×Dic3) = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | (C2xC6).63(C2xDic3) | 288,696 |