Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C2×Dic3

Direct product G=N×Q with N=C2×C6 and Q=C2×Dic3
dρLabelID
Dic3×C22×C696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C2×C6 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊(C2×Dic3) = S3×A4⋊C4φ: C2×Dic3/C2D6 ⊆ Aut C2×C6366(C2xC6):(C2xDic3)288,856
(C2×C6)⋊2(C2×Dic3) = C6×A4⋊C4φ: C2×Dic3/C22S3 ⊆ Aut C2×C672(C2xC6):2(C2xDic3)288,905
(C2×C6)⋊3(C2×Dic3) = C2×C6.7S4φ: C2×Dic3/C22S3 ⊆ Aut C2×C672(C2xC6):3(C2xDic3)288,916
(C2×C6)⋊4(C2×Dic3) = S3×C6.D4φ: C2×Dic3/C6C22 ⊆ Aut C2×C648(C2xC6):4(C2xDic3)288,616
(C2×C6)⋊5(C2×Dic3) = C62.115C23φ: C2×Dic3/C6C22 ⊆ Aut C2×C648(C2xC6):5(C2xDic3)288,621
(C2×C6)⋊6(C2×Dic3) = D4×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C6144(C2xC6):6(C2xDic3)288,791
(C2×C6)⋊7(C2×Dic3) = C3×D4×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C648(C2xC6):7(C2xDic3)288,705
(C2×C6)⋊8(C2×Dic3) = Dic3×C3⋊D4φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C648(C2xC6):8(C2xDic3)288,620
(C2×C6)⋊9(C2×Dic3) = C22×S3×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6):9(C2xDic3)288,969
(C2×C6)⋊10(C2×Dic3) = C6×C6.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C648(C2xC6):10(C2xDic3)288,723
(C2×C6)⋊11(C2×Dic3) = C2×C625C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6):11(C2xDic3)288,809
(C2×C6)⋊12(C2×Dic3) = C23×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6):12(C2xDic3)288,1016

Non-split extensions G=N.Q with N=C2×C6 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6).(C2×Dic3) = C2×C6.S4φ: C2×Dic3/C22S3 ⊆ Aut C2×C672(C2xC6).(C2xDic3)288,341
(C2×C6).2(C2×Dic3) = D4×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C2×C6144(C2xC6).2(C2xDic3)288,144
(C2×C6).3(C2×Dic3) = D4.Dic9φ: C2×Dic3/C6C22 ⊆ Aut C2×C61444(C2xC6).3(C2xDic3)288,158
(C2×C6).4(C2×Dic3) = C12.D12φ: C2×Dic3/C6C22 ⊆ Aut C2×C6484(C2xC6).4(C2xDic3)288,206
(C2×C6).5(C2×Dic3) = C12.14D12φ: C2×Dic3/C6C22 ⊆ Aut C2×C6484(C2xC6).5(C2xDic3)288,208
(C2×C6).6(C2×Dic3) = C62.31D4φ: C2×Dic3/C6C22 ⊆ Aut C2×C6244(C2xC6).6(C2xDic3)288,228
(C2×C6).7(C2×Dic3) = S3×C4.Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C6484(C2xC6).7(C2xDic3)288,461
(C2×C6).8(C2×Dic3) = D12.Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C6484(C2xC6).8(C2xDic3)288,463
(C2×C6).9(C2×Dic3) = C62.97C23φ: C2×Dic3/C6C22 ⊆ Aut C2×C648(C2xC6).9(C2xDic3)288,603
(C2×C6).10(C2×Dic3) = D4.(C3⋊Dic3)φ: C2×Dic3/C6C22 ⊆ Aut C2×C6144(C2xC6).10(C2xDic3)288,805
(C2×C6).11(C2×Dic3) = C3×D4.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C6484(C2xC6).11(C2xDic3)288,719
(C2×C6).12(C2×Dic3) = Dic3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).12(C2xDic3)288,200
(C2×C6).13(C2×Dic3) = C3⋊C8⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).13(C2xDic3)288,202
(C2×C6).14(C2×Dic3) = C12.77D12φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).14(C2xDic3)288,204
(C2×C6).15(C2×Dic3) = C12.81D12φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).15(C2xDic3)288,219
(C2×C6).16(C2×Dic3) = C62.6Q8φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).16(C2xDic3)288,227
(C2×C6).17(C2×Dic3) = C2×S3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).17(C2xDic3)288,460
(C2×C6).18(C2×Dic3) = D12.2Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C6484(C2xC6).18(C2xDic3)288,462
(C2×C6).19(C2×Dic3) = C2×D6.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).19(C2xDic3)288,467
(C2×C6).20(C2×Dic3) = C2×Dic32φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).20(C2xDic3)288,602
(C2×C6).21(C2×Dic3) = C2×D6⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).21(C2xDic3)288,608
(C2×C6).22(C2×Dic3) = C2×Dic3⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C696(C2xC6).22(C2xDic3)288,613
(C2×C6).23(C2×Dic3) = C3×C12.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6244(C2xC6).23(C2xDic3)288,267
(C2×C6).24(C2×Dic3) = C3×C23.7D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6244(C2xC6).24(C2xDic3)288,268
(C2×C6).25(C2×Dic3) = C3×C12.10D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6484(C2xC6).25(C2xDic3)288,270
(C2×C6).26(C2×Dic3) = C6×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C648(C2xC6).26(C2xDic3)288,692
(C2×C6).27(C2×Dic3) = C3×C23.26D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C648(C2xC6).27(C2xDic3)288,697
(C2×C6).28(C2×Dic3) = C4×C9⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).28(C2xDic3)288,9
(C2×C6).29(C2×Dic3) = C42.D9φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).29(C2xDic3)288,10
(C2×C6).30(C2×Dic3) = C36⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).30(C2xDic3)288,11
(C2×C6).31(C2×Dic3) = C36.55D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).31(C2xDic3)288,37
(C2×C6).32(C2×Dic3) = C18.C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).32(C2xDic3)288,38
(C2×C6).33(C2×Dic3) = C36.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6724(C2xC6).33(C2xDic3)288,39
(C2×C6).34(C2×Dic3) = C232Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6724(C2xC6).34(C2xDic3)288,41
(C2×C6).35(C2×Dic3) = C36.9D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C61444(C2xC6).35(C2xDic3)288,42
(C2×C6).36(C2×Dic3) = C22×C9⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).36(C2xDic3)288,130
(C2×C6).37(C2×Dic3) = C2×C4.Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).37(C2xDic3)288,131
(C2×C6).38(C2×Dic3) = C2×C4×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).38(C2xDic3)288,132
(C2×C6).39(C2×Dic3) = C2×C4⋊Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).39(C2xDic3)288,135
(C2×C6).40(C2×Dic3) = C23.26D18φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).40(C2xDic3)288,136
(C2×C6).41(C2×Dic3) = C2×C18.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).41(C2xDic3)288,162
(C2×C6).42(C2×Dic3) = C4×C324C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).42(C2xDic3)288,277
(C2×C6).43(C2×Dic3) = C122.C2φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).43(C2xDic3)288,278
(C2×C6).44(C2×Dic3) = C12.57D12φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).44(C2xDic3)288,279
(C2×C6).45(C2×Dic3) = C627C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).45(C2xDic3)288,305
(C2×C6).46(C2×Dic3) = C62.15Q8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).46(C2xDic3)288,306
(C2×C6).47(C2×Dic3) = (C6×D4).S3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C672(C2xC6).47(C2xDic3)288,308
(C2×C6).48(C2×Dic3) = C62.38D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C672(C2xC6).48(C2xDic3)288,309
(C2×C6).49(C2×Dic3) = (C6×C12).C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).49(C2xDic3)288,311
(C2×C6).50(C2×Dic3) = C23×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).50(C2xDic3)288,365
(C2×C6).51(C2×Dic3) = C22×C324C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).51(C2xDic3)288,777
(C2×C6).52(C2×Dic3) = C2×C12.58D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).52(C2xDic3)288,778
(C2×C6).53(C2×Dic3) = C2×C4×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).53(C2xDic3)288,779
(C2×C6).54(C2×Dic3) = C2×C12⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6288(C2xC6).54(C2xDic3)288,782
(C2×C6).55(C2×Dic3) = C62.247C23φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C6144(C2xC6).55(C2xDic3)288,783
(C2×C6).56(C2×Dic3) = C12×C3⋊C8central extension (φ=1)96(C2xC6).56(C2xDic3)288,236
(C2×C6).57(C2×Dic3) = C3×C42.S3central extension (φ=1)96(C2xC6).57(C2xDic3)288,237
(C2×C6).58(C2×Dic3) = C3×C12⋊C8central extension (φ=1)96(C2xC6).58(C2xDic3)288,238
(C2×C6).59(C2×Dic3) = C3×C12.55D4central extension (φ=1)48(C2xC6).59(C2xDic3)288,264
(C2×C6).60(C2×Dic3) = C3×C6.C42central extension (φ=1)96(C2xC6).60(C2xDic3)288,265
(C2×C6).61(C2×Dic3) = C2×C6×C3⋊C8central extension (φ=1)96(C2xC6).61(C2xDic3)288,691
(C2×C6).62(C2×Dic3) = Dic3×C2×C12central extension (φ=1)96(C2xC6).62(C2xDic3)288,693
(C2×C6).63(C2×Dic3) = C6×C4⋊Dic3central extension (φ=1)96(C2xC6).63(C2xDic3)288,696

׿
×
𝔽