Extensions 1→N→G→Q→1 with N=S3xC6 and Q=D4

Direct product G=NxQ with N=S3xC6 and Q=D4
dρLabelID
S3xC6xD448S3xC6xD4288,992

Semidirect products G=N:Q with N=S3xC6 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3xC6):1D4 = C62.55C23φ: D4/C2C22 ⊆ Out S3xC696(S3xC6):1D4288,533
(S3xC6):2D4 = Dic3:D12φ: D4/C2C22 ⊆ Out S3xC648(S3xC6):2D4288,534
(S3xC6):3D4 = D6:4D12φ: D4/C2C22 ⊆ Out S3xC648(S3xC6):3D4288,570
(S3xC6):4D4 = D6:5D12φ: D4/C2C22 ⊆ Out S3xC648(S3xC6):4D4288,571
(S3xC6):5D4 = C62.112C23φ: D4/C2C22 ⊆ Out S3xC648(S3xC6):5D4288,618
(S3xC6):6D4 = C62.113C23φ: D4/C2C22 ⊆ Out S3xC648(S3xC6):6D4288,619
(S3xC6):7D4 = C62.125C23φ: D4/C2C22 ⊆ Out S3xC648(S3xC6):7D4288,631
(S3xC6):8D4 = D6:D12φ: D4/C4C2 ⊆ Out S3xC648(S3xC6):8D4288,554
(S3xC6):9D4 = D6:2D12φ: D4/C4C2 ⊆ Out S3xC696(S3xC6):9D4288,556
(S3xC6):10D4 = C12:7D12φ: D4/C4C2 ⊆ Out S3xC648(S3xC6):10D4288,557
(S3xC6):11D4 = C3xDic3:D4φ: D4/C4C2 ⊆ Out S3xC648(S3xC6):11D4288,655
(S3xC6):12D4 = C3xC12:D4φ: D4/C4C2 ⊆ Out S3xC696(S3xC6):12D4288,666
(S3xC6):13D4 = C3xD6:3D4φ: D4/C4C2 ⊆ Out S3xC648(S3xC6):13D4288,709
(S3xC6):14D4 = C2xS3xD12φ: D4/C4C2 ⊆ Out S3xC648(S3xC6):14D4288,951
(S3xC6):15D4 = C62:4D4φ: D4/C22C2 ⊆ Out S3xC648(S3xC6):15D4288,624
(S3xC6):16D4 = C62:5D4φ: D4/C22C2 ⊆ Out S3xC648(S3xC6):16D4288,625
(S3xC6):17D4 = C3xD6:D4φ: D4/C22C2 ⊆ Out S3xC648(S3xC6):17D4288,653
(S3xC6):18D4 = C3xC23:2D6φ: D4/C22C2 ⊆ Out S3xC648(S3xC6):18D4288,708
(S3xC6):19D4 = C2xS3xC3:D4φ: D4/C22C2 ⊆ Out S3xC648(S3xC6):19D4288,976

Non-split extensions G=N.Q with N=S3xC6 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3xC6).1D4 = C24:1D6φ: D4/C2C22 ⊆ Out S3xC6484+(S3xC6).1D4288,442
(S3xC6).2D4 = D24:S3φ: D4/C2C22 ⊆ Out S3xC6484(S3xC6).2D4288,443
(S3xC6).3D4 = C24.3D6φ: D4/C2C22 ⊆ Out S3xC6964-(S3xC6).3D4288,448
(S3xC6).4D4 = Dic12:S3φ: D4/C2C22 ⊆ Out S3xC6484(S3xC6).4D4288,449
(S3xC6).5D4 = C62.54C23φ: D4/C2C22 ⊆ Out S3xC696(S3xC6).5D4288,532
(S3xC6).6D4 = D6.D12φ: D4/C2C22 ⊆ Out S3xC648(S3xC6).6D4288,538
(S3xC6).7D4 = D6.9D12φ: D4/C2C22 ⊆ Out S3xC696(S3xC6).7D4288,539
(S3xC6).8D4 = Dic6:3D6φ: D4/C2C22 ⊆ Out S3xC6488+(S3xC6).8D4288,573
(S3xC6).9D4 = Dic6.19D6φ: D4/C2C22 ⊆ Out S3xC6488-(S3xC6).9D4288,577
(S3xC6).10D4 = D12.22D6φ: D4/C2C22 ⊆ Out S3xC6488-(S3xC6).10D4288,581
(S3xC6).11D4 = Dic6.20D6φ: D4/C2C22 ⊆ Out S3xC6488+(S3xC6).11D4288,583
(S3xC6).12D4 = D12:6D6φ: D4/C2C22 ⊆ Out S3xC6488+(S3xC6).12D4288,587
(S3xC6).13D4 = D12.11D6φ: D4/C2C22 ⊆ Out S3xC6968-(S3xC6).13D4288,591
(S3xC6).14D4 = D12.12D6φ: D4/C2C22 ⊆ Out S3xC6968-(S3xC6).14D4288,595
(S3xC6).15D4 = D12.13D6φ: D4/C2C22 ⊆ Out S3xC6488+(S3xC6).15D4288,597
(S3xC6).16D4 = C62.111C23φ: D4/C2C22 ⊆ Out S3xC648(S3xC6).16D4288,617
(S3xC6).17D4 = S3xC24:C2φ: D4/C4C2 ⊆ Out S3xC6484(S3xC6).17D4288,440
(S3xC6).18D4 = S3xD24φ: D4/C4C2 ⊆ Out S3xC6484+(S3xC6).18D4288,441
(S3xC6).19D4 = S3xDic12φ: D4/C4C2 ⊆ Out S3xC6964-(S3xC6).19D4288,447
(S3xC6).20D4 = D6.1D12φ: D4/C4C2 ⊆ Out S3xC6484(S3xC6).20D4288,454
(S3xC6).21D4 = D24:7S3φ: D4/C4C2 ⊆ Out S3xC6964-(S3xC6).21D4288,455
(S3xC6).22D4 = D6.3D12φ: D4/C4C2 ⊆ Out S3xC6484+(S3xC6).22D4288,456
(S3xC6).23D4 = S3xC4:Dic3φ: D4/C4C2 ⊆ Out S3xC696(S3xC6).23D4288,537
(S3xC6).24D4 = S3xD6:C4φ: D4/C4C2 ⊆ Out S3xC648(S3xC6).24D4288,568
(S3xC6).25D4 = C3xD8:3S3φ: D4/C4C2 ⊆ Out S3xC6484(S3xC6).25D4288,683
(S3xC6).26D4 = C3xQ8.7D6φ: D4/C4C2 ⊆ Out S3xC6484(S3xC6).26D4288,687
(S3xC6).27D4 = C3xD24:C2φ: D4/C4C2 ⊆ Out S3xC6964(S3xC6).27D4288,690
(S3xC6).28D4 = C62.20C23φ: D4/C22C2 ⊆ Out S3xC648(S3xC6).28D4288,498
(S3xC6).29D4 = S3xDic3:C4φ: D4/C22C2 ⊆ Out S3xC696(S3xC6).29D4288,524
(S3xC6).30D4 = C62.75C23φ: D4/C22C2 ⊆ Out S3xC696(S3xC6).30D4288,553
(S3xC6).31D4 = S3xD4:S3φ: D4/C22C2 ⊆ Out S3xC6488+(S3xC6).31D4288,572
(S3xC6).32D4 = S3xD4.S3φ: D4/C22C2 ⊆ Out S3xC6488-(S3xC6).32D4288,576
(S3xC6).33D4 = D12:9D6φ: D4/C22C2 ⊆ Out S3xC6488-(S3xC6).33D4288,580
(S3xC6).34D4 = D12.7D6φ: D4/C22C2 ⊆ Out S3xC6488+(S3xC6).34D4288,582
(S3xC6).35D4 = S3xQ8:2S3φ: D4/C22C2 ⊆ Out S3xC6488+(S3xC6).35D4288,586
(S3xC6).36D4 = S3xC3:Q16φ: D4/C22C2 ⊆ Out S3xC6968-(S3xC6).36D4288,590
(S3xC6).37D4 = D12.24D6φ: D4/C22C2 ⊆ Out S3xC6968-(S3xC6).37D4288,594
(S3xC6).38D4 = Dic6.22D6φ: D4/C22C2 ⊆ Out S3xC6488+(S3xC6).38D4288,596
(S3xC6).39D4 = S3xC6.D4φ: D4/C22C2 ⊆ Out S3xC648(S3xC6).39D4288,616
(S3xC6).40D4 = C3xC23.9D6φ: D4/C22C2 ⊆ Out S3xC648(S3xC6).40D4288,654
(S3xC6).41D4 = C3xD6.D4φ: D4/C22C2 ⊆ Out S3xC696(S3xC6).41D4288,665
(S3xC6).42D4 = C3xD8:S3φ: D4/C22C2 ⊆ Out S3xC6484(S3xC6).42D4288,682
(S3xC6).43D4 = C3xQ8:3D6φ: D4/C22C2 ⊆ Out S3xC6484(S3xC6).43D4288,685
(S3xC6).44D4 = C3xD4.D6φ: D4/C22C2 ⊆ Out S3xC6484(S3xC6).44D4288,686
(S3xC6).45D4 = C3xQ16:S3φ: D4/C22C2 ⊆ Out S3xC6964(S3xC6).45D4288,689
(S3xC6).46D4 = C3xS3xC22:C4φ: trivial image48(S3xC6).46D4288,651
(S3xC6).47D4 = C3xS3xC4:C4φ: trivial image96(S3xC6).47D4288,662
(S3xC6).48D4 = C3xS3xD8φ: trivial image484(S3xC6).48D4288,681
(S3xC6).49D4 = C3xS3xSD16φ: trivial image484(S3xC6).49D4288,684
(S3xC6).50D4 = C3xS3xQ16φ: trivial image964(S3xC6).50D4288,688

׿
x
:
Z
F
o
wr
Q
<