Extensions 1→N→G→Q→1 with N=C3 and Q=S3×SD16

Direct product G=N×Q with N=C3 and Q=S3×SD16

Semidirect products G=N:Q with N=C3 and Q=S3×SD16
extensionφ:Q→Aut NdρLabelID
C31(S3×SD16) = S3×C24⋊C2φ: S3×SD16/S3×C8C2 ⊆ Aut C3484C3:1(S3xSD16)288,440
C32(S3×SD16) = C249D6φ: S3×SD16/C24⋊C2C2 ⊆ Aut C3484C3:2(S3xSD16)288,444
C33(S3×SD16) = Dic6⋊D6φ: S3×SD16/D4.S3C2 ⊆ Aut C3248+C3:3(S3xSD16)288,578
C34(S3×SD16) = D12.9D6φ: S3×SD16/Q82S3C2 ⊆ Aut C3488-C3:4(S3xSD16)288,588
C35(S3×SD16) = SD16×C3⋊S3φ: S3×SD16/C3×SD16C2 ⊆ Aut C372C3:5(S3xSD16)288,770
C36(S3×SD16) = S3×D4.S3φ: S3×SD16/S3×D4C2 ⊆ Aut C3488-C3:6(S3xSD16)288,576
C37(S3×SD16) = S3×Q82S3φ: S3×SD16/S3×Q8C2 ⊆ Aut C3488+C3:7(S3xSD16)288,586

Non-split extensions G=N.Q with N=C3 and Q=S3×SD16
extensionφ:Q→Aut NdρLabelID
C3.(S3×SD16) = SD16×D9φ: S3×SD16/C3×SD16C2 ⊆ Aut C3724C3.(S3xSD16)288,123