extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(Q8⋊3S3) = C62.6C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.1(Q8:3S3) | 288,484 |
C6.2(Q8⋊3S3) = C62.11C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.2(Q8:3S3) | 288,489 |
C6.3(Q8⋊3S3) = Dic3×Dic6 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.3(Q8:3S3) | 288,490 |
C6.4(Q8⋊3S3) = Dic3.Dic6 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.4(Q8:3S3) | 288,493 |
C6.5(Q8⋊3S3) = C62.20C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.5(Q8:3S3) | 288,498 |
C6.6(Q8⋊3S3) = C62.24C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.6(Q8:3S3) | 288,502 |
C6.7(Q8⋊3S3) = D6⋊6Dic6 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.7(Q8:3S3) | 288,504 |
C6.8(Q8⋊3S3) = C62.31C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.8(Q8:3S3) | 288,509 |
C6.9(Q8⋊3S3) = C12.28D12 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.9(Q8:3S3) | 288,512 |
C6.10(Q8⋊3S3) = C62.38C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.10(Q8:3S3) | 288,516 |
C6.11(Q8⋊3S3) = C62.39C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.11(Q8:3S3) | 288,517 |
C6.12(Q8⋊3S3) = C62.58C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.12(Q8:3S3) | 288,536 |
C6.13(Q8⋊3S3) = Dic3⋊5D12 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.13(Q8:3S3) | 288,542 |
C6.14(Q8⋊3S3) = C62.67C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.14(Q8:3S3) | 288,545 |
C6.15(Q8⋊3S3) = C62.74C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.15(Q8:3S3) | 288,552 |
C6.16(Q8⋊3S3) = C62.77C23 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.16(Q8:3S3) | 288,555 |
C6.17(Q8⋊3S3) = C12⋊7D12 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.17(Q8:3S3) | 288,557 |
C6.18(Q8⋊3S3) = Dic3⋊3D12 | φ: Q8⋊3S3/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.18(Q8:3S3) | 288,558 |
C6.19(Q8⋊3S3) = C62.13C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.19(Q8:3S3) | 288,491 |
C6.20(Q8⋊3S3) = C62.16C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.20(Q8:3S3) | 288,494 |
C6.21(Q8⋊3S3) = C62.18C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.21(Q8:3S3) | 288,496 |
C6.22(Q8⋊3S3) = C62.19C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.22(Q8:3S3) | 288,497 |
C6.23(Q8⋊3S3) = C62.23C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.23(Q8:3S3) | 288,501 |
C6.24(Q8⋊3S3) = C62.28C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.24(Q8:3S3) | 288,506 |
C6.25(Q8⋊3S3) = C62.32C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.25(Q8:3S3) | 288,510 |
C6.26(Q8⋊3S3) = C62.33C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.26(Q8:3S3) | 288,511 |
C6.27(Q8⋊3S3) = C12.30D12 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.27(Q8:3S3) | 288,519 |
C6.28(Q8⋊3S3) = C62.42C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.28(Q8:3S3) | 288,520 |
C6.29(Q8⋊3S3) = C62.48C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.29(Q8:3S3) | 288,526 |
C6.30(Q8⋊3S3) = C62.51C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.30(Q8:3S3) | 288,529 |
C6.31(Q8⋊3S3) = C62.54C23 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.31(Q8:3S3) | 288,532 |
C6.32(Q8⋊3S3) = Dic3⋊D12 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.32(Q8:3S3) | 288,534 |
C6.33(Q8⋊3S3) = D6⋊1Dic6 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.33(Q8:3S3) | 288,535 |
C6.34(Q8⋊3S3) = D6.D12 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.34(Q8:3S3) | 288,538 |
C6.35(Q8⋊3S3) = D12⋊Dic3 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.35(Q8:3S3) | 288,546 |
C6.36(Q8⋊3S3) = C12⋊2D12 | φ: Q8⋊3S3/D12 → C2 ⊆ Aut C6 | 48 | | C6.36(Q8:3S3) | 288,564 |
C6.37(Q8⋊3S3) = C36.3Q8 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 288 | | C6.37(Q8:3S3) | 288,100 |
C6.38(Q8⋊3S3) = C4⋊C4⋊7D9 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.38(Q8:3S3) | 288,102 |
C6.39(Q8⋊3S3) = D36⋊C4 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.39(Q8:3S3) | 288,103 |
C6.40(Q8⋊3S3) = D18.D4 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.40(Q8:3S3) | 288,104 |
C6.41(Q8⋊3S3) = C4⋊D36 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.41(Q8:3S3) | 288,105 |
C6.42(Q8⋊3S3) = C4⋊C4⋊D9 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.42(Q8:3S3) | 288,108 |
C6.43(Q8⋊3S3) = Q8×Dic9 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 288 | | C6.43(Q8:3S3) | 288,155 |
C6.44(Q8⋊3S3) = D18⋊3Q8 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.44(Q8:3S3) | 288,156 |
C6.45(Q8⋊3S3) = C36.23D4 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.45(Q8:3S3) | 288,157 |
C6.46(Q8⋊3S3) = C2×Q8⋊3D9 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.46(Q8:3S3) | 288,360 |
C6.47(Q8⋊3S3) = C62.234C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 288 | | C6.47(Q8:3S3) | 288,747 |
C6.48(Q8⋊3S3) = C62.236C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.48(Q8:3S3) | 288,749 |
C6.49(Q8⋊3S3) = C62.237C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.49(Q8:3S3) | 288,750 |
C6.50(Q8⋊3S3) = C62.238C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.50(Q8:3S3) | 288,751 |
C6.51(Q8⋊3S3) = C12⋊3D12 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.51(Q8:3S3) | 288,752 |
C6.52(Q8⋊3S3) = C62.242C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.52(Q8:3S3) | 288,755 |
C6.53(Q8⋊3S3) = Q8×C3⋊Dic3 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 288 | | C6.53(Q8:3S3) | 288,802 |
C6.54(Q8⋊3S3) = C62.261C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.54(Q8:3S3) | 288,803 |
C6.55(Q8⋊3S3) = C62.262C23 | φ: Q8⋊3S3/C3×Q8 → C2 ⊆ Aut C6 | 144 | | C6.55(Q8:3S3) | 288,804 |
C6.56(Q8⋊3S3) = C3×C4.Dic6 | central extension (φ=1) | 96 | | C6.56(Q8:3S3) | 288,661 |
C6.57(Q8⋊3S3) = C3×C4⋊C4⋊7S3 | central extension (φ=1) | 96 | | C6.57(Q8:3S3) | 288,663 |
C6.58(Q8⋊3S3) = C3×Dic3⋊5D4 | central extension (φ=1) | 96 | | C6.58(Q8:3S3) | 288,664 |
C6.59(Q8⋊3S3) = C3×D6.D4 | central extension (φ=1) | 96 | | C6.59(Q8:3S3) | 288,665 |
C6.60(Q8⋊3S3) = C3×C12⋊D4 | central extension (φ=1) | 96 | | C6.60(Q8:3S3) | 288,666 |
C6.61(Q8⋊3S3) = C3×C4⋊C4⋊S3 | central extension (φ=1) | 96 | | C6.61(Q8:3S3) | 288,669 |
C6.62(Q8⋊3S3) = C3×Q8×Dic3 | central extension (φ=1) | 96 | | C6.62(Q8:3S3) | 288,716 |
C6.63(Q8⋊3S3) = C3×D6⋊3Q8 | central extension (φ=1) | 96 | | C6.63(Q8:3S3) | 288,717 |
C6.64(Q8⋊3S3) = C3×C12.23D4 | central extension (φ=1) | 96 | | C6.64(Q8:3S3) | 288,718 |