# Extensions 1→N→G→Q→1 with N=C6×D4 and Q=S3

Direct product G=N×Q with N=C6×D4 and Q=S3
dρLabelID
S3×C6×D448S3xC6xD4288,992

Semidirect products G=N:Q with N=C6×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×D4)⋊1S3 = C2×C327D8φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4):1S3288,788
(C6×D4)⋊2S3 = C62.131D4φ: S3/C3C2 ⊆ Out C6×D472(C6xD4):2S3288,789
(C6×D4)⋊3S3 = C62.256C23φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4):3S3288,795
(C6×D4)⋊4S3 = C62.258C23φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4):4S3288,797
(C6×D4)⋊5S3 = C2×D4×C3⋊S3φ: S3/C3C2 ⊆ Out C6×D472(C6xD4):5S3288,1007
(C6×D4)⋊6S3 = C2×C12.D6φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4):6S3288,1008
(C6×D4)⋊7S3 = C3282+ 1+4φ: S3/C3C2 ⊆ Out C6×D472(C6xD4):7S3288,1009
(C6×D4)⋊8S3 = C6×D4⋊S3φ: S3/C3C2 ⊆ Out C6×D448(C6xD4):8S3288,702
(C6×D4)⋊9S3 = C3×D126C22φ: S3/C3C2 ⊆ Out C6×D4244(C6xD4):9S3288,703
(C6×D4)⋊10S3 = C3×C232D6φ: S3/C3C2 ⊆ Out C6×D448(C6xD4):10S3288,708
(C6×D4)⋊11S3 = C3×D63D4φ: S3/C3C2 ⊆ Out C6×D448(C6xD4):11S3288,709
(C6×D4)⋊12S3 = C3×C23.14D6φ: S3/C3C2 ⊆ Out C6×D448(C6xD4):12S3288,710
(C6×D4)⋊13S3 = C3×C123D4φ: S3/C3C2 ⊆ Out C6×D448(C6xD4):13S3288,711
(C6×D4)⋊14S3 = C6213D4φ: S3/C3C2 ⊆ Out C6×D472(C6xD4):14S3288,794
(C6×D4)⋊15S3 = C6214D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4):15S3288,796
(C6×D4)⋊16S3 = C3×D46D6φ: S3/C3C2 ⊆ Out C6×D4244(C6xD4):16S3288,994
(C6×D4)⋊17S3 = C6×D42S3φ: trivial image48(C6xD4):17S3288,993

Non-split extensions G=N.Q with N=C6×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×D4).1S3 = C36.D4φ: S3/C3C2 ⊆ Out C6×D4724(C6xD4).1S3288,39
(C6×D4).2S3 = D4⋊Dic9φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).2S3288,40
(C6×D4).3S3 = C2×D4.D9φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).3S3288,141
(C6×D4).4S3 = C2×D4⋊D9φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).4S3288,142
(C6×D4).5S3 = D366C22φ: S3/C3C2 ⊆ Out C6×D4724(C6xD4).5S3288,143
(C6×D4).6S3 = D4×Dic9φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).6S3288,144
(C6×D4).7S3 = C36.17D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).7S3288,146
(C6×D4).8S3 = C362D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).8S3288,148
(C6×D4).9S3 = C36⋊D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).9S3288,150
(C6×D4).10S3 = C62.116D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).10S3288,307
(C6×D4).11S3 = (C6×D4).S3φ: S3/C3C2 ⊆ Out C6×D472(C6xD4).11S3288,308
(C6×D4).12S3 = C2×D4×D9φ: S3/C3C2 ⊆ Out C6×D472(C6xD4).12S3288,356
(C6×D4).13S3 = C2×D42D9φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).13S3288,357
(C6×D4).14S3 = D46D18φ: S3/C3C2 ⊆ Out C6×D4724(C6xD4).14S3288,358
(C6×D4).15S3 = C2×C329SD16φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).15S3288,790
(C6×D4).16S3 = D4×C3⋊Dic3φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).16S3288,791
(C6×D4).17S3 = C62.254C23φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).17S3288,793
(C6×D4).18S3 = C232Dic9φ: S3/C3C2 ⊆ Out C6×D4724(C6xD4).18S3288,41
(C6×D4).19S3 = C23.23D18φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).19S3288,145
(C6×D4).20S3 = C232D18φ: S3/C3C2 ⊆ Out C6×D472(C6xD4).20S3288,147
(C6×D4).21S3 = Dic9⋊D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).21S3288,149
(C6×D4).22S3 = C3×D4⋊Dic3φ: S3/C3C2 ⊆ Out C6×D448(C6xD4).22S3288,266
(C6×D4).23S3 = C3×C12.D4φ: S3/C3C2 ⊆ Out C6×D4244(C6xD4).23S3288,267
(C6×D4).24S3 = C3×C23.7D6φ: S3/C3C2 ⊆ Out C6×D4244(C6xD4).24S3288,268
(C6×D4).25S3 = C62.38D4φ: S3/C3C2 ⊆ Out C6×D472(C6xD4).25S3288,309
(C6×D4).26S3 = C6×D4.S3φ: S3/C3C2 ⊆ Out C6×D448(C6xD4).26S3288,704
(C6×D4).27S3 = C3×C23.23D6φ: S3/C3C2 ⊆ Out C6×D448(C6xD4).27S3288,706
(C6×D4).28S3 = C3×C23.12D6φ: S3/C3C2 ⊆ Out C6×D448(C6xD4).28S3288,707
(C6×D4).29S3 = C62.72D4φ: S3/C3C2 ⊆ Out C6×D4144(C6xD4).29S3288,792
(C6×D4).30S3 = C3×D4×Dic3φ: trivial image48(C6xD4).30S3288,705

׿
×
𝔽