extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×D4)⋊1S3 = C2×C32⋊7D8 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4):1S3 | 288,788 |
(C6×D4)⋊2S3 = C62.131D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4):2S3 | 288,789 |
(C6×D4)⋊3S3 = C62.256C23 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4):3S3 | 288,795 |
(C6×D4)⋊4S3 = C62.258C23 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4):4S3 | 288,797 |
(C6×D4)⋊5S3 = C2×D4×C3⋊S3 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4):5S3 | 288,1007 |
(C6×D4)⋊6S3 = C2×C12.D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4):6S3 | 288,1008 |
(C6×D4)⋊7S3 = C32⋊82+ 1+4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4):7S3 | 288,1009 |
(C6×D4)⋊8S3 = C6×D4⋊S3 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):8S3 | 288,702 |
(C6×D4)⋊9S3 = C3×D12⋊6C22 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 24 | 4 | (C6xD4):9S3 | 288,703 |
(C6×D4)⋊10S3 = C3×C23⋊2D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):10S3 | 288,708 |
(C6×D4)⋊11S3 = C3×D6⋊3D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):11S3 | 288,709 |
(C6×D4)⋊12S3 = C3×C23.14D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):12S3 | 288,710 |
(C6×D4)⋊13S3 = C3×C12⋊3D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4):13S3 | 288,711 |
(C6×D4)⋊14S3 = C62⋊13D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4):14S3 | 288,794 |
(C6×D4)⋊15S3 = C62⋊14D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4):15S3 | 288,796 |
(C6×D4)⋊16S3 = C3×D4⋊6D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 24 | 4 | (C6xD4):16S3 | 288,994 |
(C6×D4)⋊17S3 = C6×D4⋊2S3 | φ: trivial image | 48 | | (C6xD4):17S3 | 288,993 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×D4).1S3 = C36.D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | 4 | (C6xD4).1S3 | 288,39 |
(C6×D4).2S3 = D4⋊Dic9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).2S3 | 288,40 |
(C6×D4).3S3 = C2×D4.D9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).3S3 | 288,141 |
(C6×D4).4S3 = C2×D4⋊D9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).4S3 | 288,142 |
(C6×D4).5S3 = D36⋊6C22 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | 4 | (C6xD4).5S3 | 288,143 |
(C6×D4).6S3 = D4×Dic9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).6S3 | 288,144 |
(C6×D4).7S3 = C36.17D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).7S3 | 288,146 |
(C6×D4).8S3 = C36⋊2D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).8S3 | 288,148 |
(C6×D4).9S3 = C36⋊D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).9S3 | 288,150 |
(C6×D4).10S3 = C62.116D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).10S3 | 288,307 |
(C6×D4).11S3 = (C6×D4).S3 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4).11S3 | 288,308 |
(C6×D4).12S3 = C2×D4×D9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4).12S3 | 288,356 |
(C6×D4).13S3 = C2×D4⋊2D9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).13S3 | 288,357 |
(C6×D4).14S3 = D4⋊6D18 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | 4 | (C6xD4).14S3 | 288,358 |
(C6×D4).15S3 = C2×C32⋊9SD16 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).15S3 | 288,790 |
(C6×D4).16S3 = D4×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).16S3 | 288,791 |
(C6×D4).17S3 = C62.254C23 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).17S3 | 288,793 |
(C6×D4).18S3 = C23⋊2Dic9 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | 4 | (C6xD4).18S3 | 288,41 |
(C6×D4).19S3 = C23.23D18 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).19S3 | 288,145 |
(C6×D4).20S3 = C23⋊2D18 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4).20S3 | 288,147 |
(C6×D4).21S3 = Dic9⋊D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).21S3 | 288,149 |
(C6×D4).22S3 = C3×D4⋊Dic3 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).22S3 | 288,266 |
(C6×D4).23S3 = C3×C12.D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).23S3 | 288,267 |
(C6×D4).24S3 = C3×C23.7D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 24 | 4 | (C6xD4).24S3 | 288,268 |
(C6×D4).25S3 = C62.38D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 72 | | (C6xD4).25S3 | 288,309 |
(C6×D4).26S3 = C6×D4.S3 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).26S3 | 288,704 |
(C6×D4).27S3 = C3×C23.23D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).27S3 | 288,706 |
(C6×D4).28S3 = C3×C23.12D6 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 48 | | (C6xD4).28S3 | 288,707 |
(C6×D4).29S3 = C62.72D4 | φ: S3/C3 → C2 ⊆ Out C6×D4 | 144 | | (C6xD4).29S3 | 288,792 |
(C6×D4).30S3 = C3×D4×Dic3 | φ: trivial image | 48 | | (C6xD4).30S3 | 288,705 |