extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3×C2×C6) = C3×S3×D8 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.1(S3xC2xC6) | 288,681 |
C4.2(S3×C2×C6) = C3×D8⋊S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.2(S3xC2xC6) | 288,682 |
C4.3(S3×C2×C6) = C3×D8⋊3S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.3(S3xC2xC6) | 288,683 |
C4.4(S3×C2×C6) = C3×S3×SD16 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.4(S3xC2xC6) | 288,684 |
C4.5(S3×C2×C6) = C3×Q8⋊3D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.5(S3xC2xC6) | 288,685 |
C4.6(S3×C2×C6) = C3×D4.D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.6(S3xC2xC6) | 288,686 |
C4.7(S3×C2×C6) = C3×Q8.7D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.7(S3xC2xC6) | 288,687 |
C4.8(S3×C2×C6) = C3×S3×Q16 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | 4 | C4.8(S3xC2xC6) | 288,688 |
C4.9(S3×C2×C6) = C3×Q16⋊S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | 4 | C4.9(S3xC2xC6) | 288,689 |
C4.10(S3×C2×C6) = C3×D24⋊C2 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | 4 | C4.10(S3xC2xC6) | 288,690 |
C4.11(S3×C2×C6) = C6×D4⋊S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | | C4.11(S3xC2xC6) | 288,702 |
C4.12(S3×C2×C6) = C3×D12⋊6C22 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 24 | 4 | C4.12(S3xC2xC6) | 288,703 |
C4.13(S3×C2×C6) = C6×D4.S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | | C4.13(S3xC2xC6) | 288,704 |
C4.14(S3×C2×C6) = C6×Q8⋊2S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | | C4.14(S3xC2xC6) | 288,712 |
C4.15(S3×C2×C6) = C3×Q8.11D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.15(S3xC2xC6) | 288,713 |
C4.16(S3×C2×C6) = C6×C3⋊Q16 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | | C4.16(S3xC2xC6) | 288,714 |
C4.17(S3×C2×C6) = C3×D4⋊D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.17(S3xC2xC6) | 288,720 |
C4.18(S3×C2×C6) = C3×Q8.13D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.18(S3xC2xC6) | 288,721 |
C4.19(S3×C2×C6) = C3×Q8.14D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.19(S3xC2xC6) | 288,722 |
C4.20(S3×C2×C6) = C6×D4⋊2S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | | C4.20(S3xC2xC6) | 288,993 |
C4.21(S3×C2×C6) = C3×D4⋊6D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 24 | 4 | C4.21(S3xC2xC6) | 288,994 |
C4.22(S3×C2×C6) = S3×C6×Q8 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | | C4.22(S3xC2xC6) | 288,995 |
C4.23(S3×C2×C6) = C6×Q8⋊3S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 96 | | C4.23(S3xC2xC6) | 288,996 |
C4.24(S3×C2×C6) = C3×Q8.15D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.24(S3xC2xC6) | 288,997 |
C4.25(S3×C2×C6) = C3×S3×C4○D4 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.25(S3xC2xC6) | 288,998 |
C4.26(S3×C2×C6) = C6×C24⋊C2 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 96 | | C4.26(S3xC2xC6) | 288,673 |
C4.27(S3×C2×C6) = C6×D24 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 96 | | C4.27(S3xC2xC6) | 288,674 |
C4.28(S3×C2×C6) = C3×C4○D24 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 48 | 2 | C4.28(S3xC2xC6) | 288,675 |
C4.29(S3×C2×C6) = C6×Dic12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 96 | | C4.29(S3xC2xC6) | 288,676 |
C4.30(S3×C2×C6) = C3×C8⋊D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.30(S3xC2xC6) | 288,679 |
C4.31(S3×C2×C6) = C3×C8.D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.31(S3xC2xC6) | 288,680 |
C4.32(S3×C2×C6) = C2×C6×Dic6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 96 | | C4.32(S3xC2xC6) | 288,988 |
C4.33(S3×C2×C6) = C3×D4○D12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.33(S3xC2xC6) | 288,999 |
C4.34(S3×C2×C6) = C3×Q8○D12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C4 | 48 | 4 | C4.34(S3xC2xC6) | 288,1000 |
C4.35(S3×C2×C6) = S3×C2×C24 | central extension (φ=1) | 96 | | C4.35(S3xC2xC6) | 288,670 |
C4.36(S3×C2×C6) = C6×C8⋊S3 | central extension (φ=1) | 96 | | C4.36(S3xC2xC6) | 288,671 |
C4.37(S3×C2×C6) = C3×C8○D12 | central extension (φ=1) | 48 | 2 | C4.37(S3xC2xC6) | 288,672 |
C4.38(S3×C2×C6) = C3×S3×M4(2) | central extension (φ=1) | 48 | 4 | C4.38(S3xC2xC6) | 288,677 |
C4.39(S3×C2×C6) = C3×D12.C4 | central extension (φ=1) | 48 | 4 | C4.39(S3xC2xC6) | 288,678 |
C4.40(S3×C2×C6) = C2×C6×C3⋊C8 | central extension (φ=1) | 96 | | C4.40(S3xC2xC6) | 288,691 |
C4.41(S3×C2×C6) = C6×C4.Dic3 | central extension (φ=1) | 48 | | C4.41(S3xC2xC6) | 288,692 |
C4.42(S3×C2×C6) = C3×D4.Dic3 | central extension (φ=1) | 48 | 4 | C4.42(S3xC2xC6) | 288,719 |
C4.43(S3×C2×C6) = C6×C4○D12 | central extension (φ=1) | 48 | | C4.43(S3xC2xC6) | 288,991 |