Copied to
clipboard

?

G = C2×C4⋊D20order 320 = 26·5

Direct product of C2 and C4⋊D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4⋊D20, C4239D10, (C2×C4)⋊7D20, C42(C2×D20), (C2×C20)⋊30D4, C2010(C2×D4), (C2×C42)⋊9D5, C101(C41D4), (C4×C20)⋊50C22, (C22×D20)⋊4C2, C2.5(C22×D20), C10.3(C22×D4), (C2×D20)⋊42C22, (C2×C10).19C24, C22.64(C2×D20), (C2×C20).780C23, (C22×C4).438D10, (C22×D5).1C23, C22.62(C23×D5), (C23×D5).27C22, C23.315(C22×D5), (C22×C20).523C22, (C22×C10).381C23, (C2×C4×C20)⋊8C2, C51(C2×C41D4), (C2×C10).170(C2×D4), (C2×C4).729(C22×D5), SmallGroup(320,1147)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C4⋊D20
C1C5C10C2×C10C22×D5C23×D5C22×D20 — C2×C4⋊D20
C5C2×C10 — C2×C4⋊D20

Subgroups: 2430 in 498 conjugacy classes, 159 normal (9 characteristic)
C1, C2 [×7], C2 [×8], C4 [×12], C22, C22 [×6], C22 [×40], C5, C2×C4 [×18], D4 [×48], C23, C23 [×32], D5 [×8], C10 [×7], C42 [×4], C22×C4 [×3], C2×D4 [×48], C24 [×4], C20 [×12], D10 [×40], C2×C10, C2×C10 [×6], C2×C42, C41D4 [×8], C22×D4 [×6], D20 [×48], C2×C20 [×18], C22×D5 [×8], C22×D5 [×24], C22×C10, C2×C41D4, C4×C20 [×4], C2×D20 [×24], C2×D20 [×24], C22×C20 [×3], C23×D5 [×4], C4⋊D20 [×8], C2×C4×C20, C22×D20 [×6], C2×C4⋊D20

Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], D5, C2×D4 [×18], C24, D10 [×7], C41D4 [×4], C22×D4 [×3], D20 [×12], C22×D5 [×7], C2×C41D4, C2×D20 [×18], C23×D5, C4⋊D20 [×4], C22×D20 [×3], C2×C4⋊D20

Generators and relations
 G = < a,b,c,d | a2=b4=c20=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 97)(10 98)(11 99)(12 100)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 124)(22 125)(23 126)(24 127)(25 128)(26 129)(27 130)(28 131)(29 132)(30 133)(31 134)(32 135)(33 136)(34 137)(35 138)(36 139)(37 140)(38 121)(39 122)(40 123)(41 105)(42 106)(43 107)(44 108)(45 109)(46 110)(47 111)(48 112)(49 113)(50 114)(51 115)(52 116)(53 117)(54 118)(55 119)(56 120)(57 101)(58 102)(59 103)(60 104)(61 151)(62 152)(63 153)(64 154)(65 155)(66 156)(67 157)(68 158)(69 159)(70 160)(71 141)(72 142)(73 143)(74 144)(75 145)(76 146)(77 147)(78 148)(79 149)(80 150)
(1 47 130 70)(2 48 131 71)(3 49 132 72)(4 50 133 73)(5 51 134 74)(6 52 135 75)(7 53 136 76)(8 54 137 77)(9 55 138 78)(10 56 139 79)(11 57 140 80)(12 58 121 61)(13 59 122 62)(14 60 123 63)(15 41 124 64)(16 42 125 65)(17 43 126 66)(18 44 127 67)(19 45 128 68)(20 46 129 69)(21 154 83 105)(22 155 84 106)(23 156 85 107)(24 157 86 108)(25 158 87 109)(26 159 88 110)(27 160 89 111)(28 141 90 112)(29 142 91 113)(30 143 92 114)(31 144 93 115)(32 145 94 116)(33 146 95 117)(34 147 96 118)(35 148 97 119)(36 149 98 120)(37 150 99 101)(38 151 100 102)(39 152 81 103)(40 153 82 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 149)(2 148)(3 147)(4 146)(5 145)(6 144)(7 143)(8 142)(9 141)(10 160)(11 159)(12 158)(13 157)(14 156)(15 155)(16 154)(17 153)(18 152)(19 151)(20 150)(21 42)(22 41)(23 60)(24 59)(25 58)(26 57)(27 56)(28 55)(29 54)(30 53)(31 52)(32 51)(33 50)(34 49)(35 48)(36 47)(37 46)(38 45)(39 44)(40 43)(61 87)(62 86)(63 85)(64 84)(65 83)(66 82)(67 81)(68 100)(69 99)(70 98)(71 97)(72 96)(73 95)(74 94)(75 93)(76 92)(77 91)(78 90)(79 89)(80 88)(101 129)(102 128)(103 127)(104 126)(105 125)(106 124)(107 123)(108 122)(109 121)(110 140)(111 139)(112 138)(113 137)(114 136)(115 135)(116 134)(117 133)(118 132)(119 131)(120 130)

G:=sub<Sym(160)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,124)(22,125)(23,126)(24,127)(25,128)(26,129)(27,130)(28,131)(29,132)(30,133)(31,134)(32,135)(33,136)(34,137)(35,138)(36,139)(37,140)(38,121)(39,122)(40,123)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,101)(58,102)(59,103)(60,104)(61,151)(62,152)(63,153)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150), (1,47,130,70)(2,48,131,71)(3,49,132,72)(4,50,133,73)(5,51,134,74)(6,52,135,75)(7,53,136,76)(8,54,137,77)(9,55,138,78)(10,56,139,79)(11,57,140,80)(12,58,121,61)(13,59,122,62)(14,60,123,63)(15,41,124,64)(16,42,125,65)(17,43,126,66)(18,44,127,67)(19,45,128,68)(20,46,129,69)(21,154,83,105)(22,155,84,106)(23,156,85,107)(24,157,86,108)(25,158,87,109)(26,159,88,110)(27,160,89,111)(28,141,90,112)(29,142,91,113)(30,143,92,114)(31,144,93,115)(32,145,94,116)(33,146,95,117)(34,147,96,118)(35,148,97,119)(36,149,98,120)(37,150,99,101)(38,151,100,102)(39,152,81,103)(40,153,82,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,149)(2,148)(3,147)(4,146)(5,145)(6,144)(7,143)(8,142)(9,141)(10,160)(11,159)(12,158)(13,157)(14,156)(15,155)(16,154)(17,153)(18,152)(19,151)(20,150)(21,42)(22,41)(23,60)(24,59)(25,58)(26,57)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)(37,46)(38,45)(39,44)(40,43)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,100)(69,99)(70,98)(71,97)(72,96)(73,95)(74,94)(75,93)(76,92)(77,91)(78,90)(79,89)(80,88)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)(107,123)(108,122)(109,121)(110,140)(111,139)(112,138)(113,137)(114,136)(115,135)(116,134)(117,133)(118,132)(119,131)(120,130)>;

G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,124)(22,125)(23,126)(24,127)(25,128)(26,129)(27,130)(28,131)(29,132)(30,133)(31,134)(32,135)(33,136)(34,137)(35,138)(36,139)(37,140)(38,121)(39,122)(40,123)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,101)(58,102)(59,103)(60,104)(61,151)(62,152)(63,153)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150), (1,47,130,70)(2,48,131,71)(3,49,132,72)(4,50,133,73)(5,51,134,74)(6,52,135,75)(7,53,136,76)(8,54,137,77)(9,55,138,78)(10,56,139,79)(11,57,140,80)(12,58,121,61)(13,59,122,62)(14,60,123,63)(15,41,124,64)(16,42,125,65)(17,43,126,66)(18,44,127,67)(19,45,128,68)(20,46,129,69)(21,154,83,105)(22,155,84,106)(23,156,85,107)(24,157,86,108)(25,158,87,109)(26,159,88,110)(27,160,89,111)(28,141,90,112)(29,142,91,113)(30,143,92,114)(31,144,93,115)(32,145,94,116)(33,146,95,117)(34,147,96,118)(35,148,97,119)(36,149,98,120)(37,150,99,101)(38,151,100,102)(39,152,81,103)(40,153,82,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,149)(2,148)(3,147)(4,146)(5,145)(6,144)(7,143)(8,142)(9,141)(10,160)(11,159)(12,158)(13,157)(14,156)(15,155)(16,154)(17,153)(18,152)(19,151)(20,150)(21,42)(22,41)(23,60)(24,59)(25,58)(26,57)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)(37,46)(38,45)(39,44)(40,43)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,100)(69,99)(70,98)(71,97)(72,96)(73,95)(74,94)(75,93)(76,92)(77,91)(78,90)(79,89)(80,88)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)(107,123)(108,122)(109,121)(110,140)(111,139)(112,138)(113,137)(114,136)(115,135)(116,134)(117,133)(118,132)(119,131)(120,130) );

G=PermutationGroup([(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,97),(10,98),(11,99),(12,100),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,124),(22,125),(23,126),(24,127),(25,128),(26,129),(27,130),(28,131),(29,132),(30,133),(31,134),(32,135),(33,136),(34,137),(35,138),(36,139),(37,140),(38,121),(39,122),(40,123),(41,105),(42,106),(43,107),(44,108),(45,109),(46,110),(47,111),(48,112),(49,113),(50,114),(51,115),(52,116),(53,117),(54,118),(55,119),(56,120),(57,101),(58,102),(59,103),(60,104),(61,151),(62,152),(63,153),(64,154),(65,155),(66,156),(67,157),(68,158),(69,159),(70,160),(71,141),(72,142),(73,143),(74,144),(75,145),(76,146),(77,147),(78,148),(79,149),(80,150)], [(1,47,130,70),(2,48,131,71),(3,49,132,72),(4,50,133,73),(5,51,134,74),(6,52,135,75),(7,53,136,76),(8,54,137,77),(9,55,138,78),(10,56,139,79),(11,57,140,80),(12,58,121,61),(13,59,122,62),(14,60,123,63),(15,41,124,64),(16,42,125,65),(17,43,126,66),(18,44,127,67),(19,45,128,68),(20,46,129,69),(21,154,83,105),(22,155,84,106),(23,156,85,107),(24,157,86,108),(25,158,87,109),(26,159,88,110),(27,160,89,111),(28,141,90,112),(29,142,91,113),(30,143,92,114),(31,144,93,115),(32,145,94,116),(33,146,95,117),(34,147,96,118),(35,148,97,119),(36,149,98,120),(37,150,99,101),(38,151,100,102),(39,152,81,103),(40,153,82,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,149),(2,148),(3,147),(4,146),(5,145),(6,144),(7,143),(8,142),(9,141),(10,160),(11,159),(12,158),(13,157),(14,156),(15,155),(16,154),(17,153),(18,152),(19,151),(20,150),(21,42),(22,41),(23,60),(24,59),(25,58),(26,57),(27,56),(28,55),(29,54),(30,53),(31,52),(32,51),(33,50),(34,49),(35,48),(36,47),(37,46),(38,45),(39,44),(40,43),(61,87),(62,86),(63,85),(64,84),(65,83),(66,82),(67,81),(68,100),(69,99),(70,98),(71,97),(72,96),(73,95),(74,94),(75,93),(76,92),(77,91),(78,90),(79,89),(80,88),(101,129),(102,128),(103,127),(104,126),(105,125),(106,124),(107,123),(108,122),(109,121),(110,140),(111,139),(112,138),(113,137),(114,136),(115,135),(116,134),(117,133),(118,132),(119,131),(120,130)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
001000
000100
0000400
0000040
,
2320000
37390000
0022800
00133900
0000400
0000040
,
110000
560000
0004000
001600
00002530
00002739
,
28140000
29130000
00163900
00252500
00002827
00001213

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[2,37,0,0,0,0,32,39,0,0,0,0,0,0,2,13,0,0,0,0,28,39,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,5,0,0,0,0,1,6,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,25,27,0,0,0,0,30,39],[28,29,0,0,0,0,14,13,0,0,0,0,0,0,16,25,0,0,0,0,39,25,0,0,0,0,0,0,28,12,0,0,0,0,27,13] >;

92 conjugacy classes

class 1 2A···2G2H···2O4A···4L5A5B10A···10N20A···20AV
order12···22···24···45510···1020···20
size11···120···202···2222···22···2

92 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2D4D5D10D10D20
kernelC2×C4⋊D20C4⋊D20C2×C4×C20C22×D20C2×C20C2×C42C42C22×C4C2×C4
# reps18161228648

In GAP, Magma, Sage, TeX

C_2\times C_4\rtimes D_{20}
% in TeX

G:=Group("C2xC4:D20");
// GroupNames label

G:=SmallGroup(320,1147);
// by ID

G=gap.SmallGroup(320,1147);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,675,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽