Copied to
clipboard

?

G = C4×C4○D20order 320 = 26·5

Direct product of C4 and C4○D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×C4○D20, C42.275D10, (C2×C42)⋊8D5, (C4×D20)⋊53C2, D2035(C2×C4), C2012(C4○D4), (D5×C42)⋊15C2, Dic1033(C2×C4), (C4×Dic10)⋊55C2, C42⋊D538C2, C10.26(C23×C4), (C2×C10).18C24, C20.177(C22×C4), (C4×C20).333C22, (C2×C20).876C23, D10.10(C22×C4), (C22×C4).437D10, C22.15(C23×D5), (C2×D20).293C22, C4⋊Dic5.395C22, Dic5.10(C22×C4), C23.217(C22×D5), C23.21D1040C2, (C22×C10).380C23, (C22×C20).564C22, (C2×Dic5).184C23, (C4×Dic5).330C22, (C22×D5).157C23, C23.D5.139C22, D10⋊C4.162C22, (C2×Dic10).322C22, C10.D4.174C22, C52(C4×C4○D4), (C2×C4×C20)⋊12C2, (C2×C4)⋊13(C4×D5), C4.117(C2×C4×D5), (C2×C20)⋊43(C2×C4), (C4×D5)⋊13(C2×C4), C5⋊D412(C2×C4), (C4×C5⋊D4)⋊62C2, C22.9(C2×C4×D5), C2.7(D5×C22×C4), C2.4(C2×C4○D20), C10.6(C2×C4○D4), (C2×C4○D20).28C2, (C2×C4×D5).370C22, (C2×C4).818(C22×D5), (C2×C10).249(C22×C4), (C2×C5⋊D4).157C22, SmallGroup(320,1146)

Series: Derived Chief Lower central Upper central

C1C10 — C4×C4○D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — C4×C4○D20
C5C10 — C4×C4○D20

Subgroups: 894 in 310 conjugacy classes, 159 normal (25 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×8], C4 [×10], C22, C22 [×2], C22 [×10], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×26], D4 [×12], Q8 [×4], C23, C23 [×2], D5 [×4], C10, C10 [×2], C10 [×2], C42 [×2], C42 [×2], C42 [×6], C22⋊C4 [×6], C4⋊C4 [×6], C22×C4, C22×C4 [×2], C22×C4 [×6], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], Dic5 [×4], C20 [×8], C20 [×2], D10 [×4], D10 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C42, C2×C42 [×2], C42⋊C2 [×3], C4×D4 [×6], C4×Q8 [×2], C2×C4○D4, Dic10 [×4], C4×D5 [×8], C4×D5 [×8], D20 [×4], C2×Dic5 [×6], C5⋊D4 [×8], C2×C20 [×2], C2×C20 [×8], C2×C20 [×4], C22×D5 [×2], C22×C10, C4×C4○D4, C4×Dic5 [×6], C10.D4 [×4], C4⋊Dic5 [×2], D10⋊C4 [×4], C23.D5 [×2], C4×C20 [×2], C4×C20 [×2], C2×Dic10, C2×C4×D5 [×6], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×2], C22×C20, C22×C20 [×2], C4×Dic10 [×2], D5×C42 [×2], C42⋊D5 [×2], C4×D20 [×2], C23.21D10, C4×C5⋊D4 [×4], C2×C4×C20, C2×C4○D20, C4×C4○D20

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C4○D4 [×4], C24, D10 [×7], C23×C4, C2×C4○D4 [×2], C4×D5 [×4], C22×D5 [×7], C4×C4○D4, C2×C4×D5 [×6], C4○D20 [×4], C23×D5, D5×C22×C4, C2×C4○D20 [×2], C4×C4○D20

Generators and relations
 G = < a,b,c,d | a4=b4=d2=1, c10=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 126 59 149)(2 127 60 150)(3 128 41 151)(4 129 42 152)(5 130 43 153)(6 131 44 154)(7 132 45 155)(8 133 46 156)(9 134 47 157)(10 135 48 158)(11 136 49 159)(12 137 50 160)(13 138 51 141)(14 139 52 142)(15 140 53 143)(16 121 54 144)(17 122 55 145)(18 123 56 146)(19 124 57 147)(20 125 58 148)(21 64 81 120)(22 65 82 101)(23 66 83 102)(24 67 84 103)(25 68 85 104)(26 69 86 105)(27 70 87 106)(28 71 88 107)(29 72 89 108)(30 73 90 109)(31 74 91 110)(32 75 92 111)(33 76 93 112)(34 77 94 113)(35 78 95 114)(36 79 96 115)(37 80 97 116)(38 61 98 117)(39 62 99 118)(40 63 100 119)
(1 40 11 30)(2 21 12 31)(3 22 13 32)(4 23 14 33)(5 24 15 34)(6 25 16 35)(7 26 17 36)(8 27 18 37)(9 28 19 38)(10 29 20 39)(41 82 51 92)(42 83 52 93)(43 84 53 94)(44 85 54 95)(45 86 55 96)(46 87 56 97)(47 88 57 98)(48 89 58 99)(49 90 59 100)(50 91 60 81)(61 134 71 124)(62 135 72 125)(63 136 73 126)(64 137 74 127)(65 138 75 128)(66 139 76 129)(67 140 77 130)(68 121 78 131)(69 122 79 132)(70 123 80 133)(101 141 111 151)(102 142 112 152)(103 143 113 153)(104 144 114 154)(105 145 115 155)(106 146 116 156)(107 147 117 157)(108 148 118 158)(109 149 119 159)(110 150 120 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(34 40)(35 39)(36 38)(41 51)(42 50)(43 49)(44 48)(45 47)(52 60)(53 59)(54 58)(55 57)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(81 93)(82 92)(83 91)(84 90)(85 89)(86 88)(94 100)(95 99)(96 98)(101 111)(102 110)(103 109)(104 108)(105 107)(112 120)(113 119)(114 118)(115 117)(121 125)(122 124)(126 140)(127 139)(128 138)(129 137)(130 136)(131 135)(132 134)(141 151)(142 150)(143 149)(144 148)(145 147)(152 160)(153 159)(154 158)(155 157)

G:=sub<Sym(160)| (1,126,59,149)(2,127,60,150)(3,128,41,151)(4,129,42,152)(5,130,43,153)(6,131,44,154)(7,132,45,155)(8,133,46,156)(9,134,47,157)(10,135,48,158)(11,136,49,159)(12,137,50,160)(13,138,51,141)(14,139,52,142)(15,140,53,143)(16,121,54,144)(17,122,55,145)(18,123,56,146)(19,124,57,147)(20,125,58,148)(21,64,81,120)(22,65,82,101)(23,66,83,102)(24,67,84,103)(25,68,85,104)(26,69,86,105)(27,70,87,106)(28,71,88,107)(29,72,89,108)(30,73,90,109)(31,74,91,110)(32,75,92,111)(33,76,93,112)(34,77,94,113)(35,78,95,114)(36,79,96,115)(37,80,97,116)(38,61,98,117)(39,62,99,118)(40,63,100,119), (1,40,11,30)(2,21,12,31)(3,22,13,32)(4,23,14,33)(5,24,15,34)(6,25,16,35)(7,26,17,36)(8,27,18,37)(9,28,19,38)(10,29,20,39)(41,82,51,92)(42,83,52,93)(43,84,53,94)(44,85,54,95)(45,86,55,96)(46,87,56,97)(47,88,57,98)(48,89,58,99)(49,90,59,100)(50,91,60,81)(61,134,71,124)(62,135,72,125)(63,136,73,126)(64,137,74,127)(65,138,75,128)(66,139,76,129)(67,140,77,130)(68,121,78,131)(69,122,79,132)(70,123,80,133)(101,141,111,151)(102,142,112,152)(103,143,113,153)(104,144,114,154)(105,145,115,155)(106,146,116,156)(107,147,117,157)(108,148,118,158)(109,149,119,159)(110,150,120,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(34,40)(35,39)(36,38)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)(94,100)(95,99)(96,98)(101,111)(102,110)(103,109)(104,108)(105,107)(112,120)(113,119)(114,118)(115,117)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157)>;

G:=Group( (1,126,59,149)(2,127,60,150)(3,128,41,151)(4,129,42,152)(5,130,43,153)(6,131,44,154)(7,132,45,155)(8,133,46,156)(9,134,47,157)(10,135,48,158)(11,136,49,159)(12,137,50,160)(13,138,51,141)(14,139,52,142)(15,140,53,143)(16,121,54,144)(17,122,55,145)(18,123,56,146)(19,124,57,147)(20,125,58,148)(21,64,81,120)(22,65,82,101)(23,66,83,102)(24,67,84,103)(25,68,85,104)(26,69,86,105)(27,70,87,106)(28,71,88,107)(29,72,89,108)(30,73,90,109)(31,74,91,110)(32,75,92,111)(33,76,93,112)(34,77,94,113)(35,78,95,114)(36,79,96,115)(37,80,97,116)(38,61,98,117)(39,62,99,118)(40,63,100,119), (1,40,11,30)(2,21,12,31)(3,22,13,32)(4,23,14,33)(5,24,15,34)(6,25,16,35)(7,26,17,36)(8,27,18,37)(9,28,19,38)(10,29,20,39)(41,82,51,92)(42,83,52,93)(43,84,53,94)(44,85,54,95)(45,86,55,96)(46,87,56,97)(47,88,57,98)(48,89,58,99)(49,90,59,100)(50,91,60,81)(61,134,71,124)(62,135,72,125)(63,136,73,126)(64,137,74,127)(65,138,75,128)(66,139,76,129)(67,140,77,130)(68,121,78,131)(69,122,79,132)(70,123,80,133)(101,141,111,151)(102,142,112,152)(103,143,113,153)(104,144,114,154)(105,145,115,155)(106,146,116,156)(107,147,117,157)(108,148,118,158)(109,149,119,159)(110,150,120,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(34,40)(35,39)(36,38)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)(94,100)(95,99)(96,98)(101,111)(102,110)(103,109)(104,108)(105,107)(112,120)(113,119)(114,118)(115,117)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157) );

G=PermutationGroup([(1,126,59,149),(2,127,60,150),(3,128,41,151),(4,129,42,152),(5,130,43,153),(6,131,44,154),(7,132,45,155),(8,133,46,156),(9,134,47,157),(10,135,48,158),(11,136,49,159),(12,137,50,160),(13,138,51,141),(14,139,52,142),(15,140,53,143),(16,121,54,144),(17,122,55,145),(18,123,56,146),(19,124,57,147),(20,125,58,148),(21,64,81,120),(22,65,82,101),(23,66,83,102),(24,67,84,103),(25,68,85,104),(26,69,86,105),(27,70,87,106),(28,71,88,107),(29,72,89,108),(30,73,90,109),(31,74,91,110),(32,75,92,111),(33,76,93,112),(34,77,94,113),(35,78,95,114),(36,79,96,115),(37,80,97,116),(38,61,98,117),(39,62,99,118),(40,63,100,119)], [(1,40,11,30),(2,21,12,31),(3,22,13,32),(4,23,14,33),(5,24,15,34),(6,25,16,35),(7,26,17,36),(8,27,18,37),(9,28,19,38),(10,29,20,39),(41,82,51,92),(42,83,52,93),(43,84,53,94),(44,85,54,95),(45,86,55,96),(46,87,56,97),(47,88,57,98),(48,89,58,99),(49,90,59,100),(50,91,60,81),(61,134,71,124),(62,135,72,125),(63,136,73,126),(64,137,74,127),(65,138,75,128),(66,139,76,129),(67,140,77,130),(68,121,78,131),(69,122,79,132),(70,123,80,133),(101,141,111,151),(102,142,112,152),(103,143,113,153),(104,144,114,154),(105,145,115,155),(106,146,116,156),(107,147,117,157),(108,148,118,158),(109,149,119,159),(110,150,120,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(34,40),(35,39),(36,38),(41,51),(42,50),(43,49),(44,48),(45,47),(52,60),(53,59),(54,58),(55,57),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(81,93),(82,92),(83,91),(84,90),(85,89),(86,88),(94,100),(95,99),(96,98),(101,111),(102,110),(103,109),(104,108),(105,107),(112,120),(113,119),(114,118),(115,117),(121,125),(122,124),(126,140),(127,139),(128,138),(129,137),(130,136),(131,135),(132,134),(141,151),(142,150),(143,149),(144,148),(145,147),(152,160),(153,159),(154,158),(155,157)])

Matrix representation G ⊆ GL3(𝔽41) generated by

900
0400
0040
,
100
0320
0032
,
4000
03039
01614
,
4000
010
0840
G:=sub<GL(3,GF(41))| [9,0,0,0,40,0,0,0,40],[1,0,0,0,32,0,0,0,32],[40,0,0,0,30,16,0,39,14],[40,0,0,0,1,8,0,0,40] >;

104 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4L4M···4R4S···4AD5A5B10A···10N20A···20AV
order12222222224···44···44···45510···1020···20
size111122101010101···12···210···10222···22···2

104 irreducible representations

dim1111111111222222
type++++++++++++
imageC1C2C2C2C2C2C2C2C2C4D5C4○D4D10D10C4×D5C4○D20
kernelC4×C4○D20C4×Dic10D5×C42C42⋊D5C4×D20C23.21D10C4×C5⋊D4C2×C4×C20C2×C4○D20C4○D20C2×C42C20C42C22×C4C2×C4C4
# reps1222214111628861632

In GAP, Magma, Sage, TeX

C_4\times C_4\circ D_{20}
% in TeX

G:=Group("C4xC4oD20");
// GroupNames label

G:=SmallGroup(320,1146);
// by ID

G=gap.SmallGroup(320,1146);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^9>;
// generators/relations

׿
×
𝔽