Copied to
clipboard

?

G = C4○D4×C20order 320 = 26·5

Direct product of C20 and C4○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C4○D4×C20, D46(C2×C20), Q86(C2×C20), (D4×C20)⋊52C2, (C4×D4)⋊23C10, (C2×C42)⋊8C10, (C4×Q8)⋊18C10, (Q8×C20)⋊38C2, C2.6(C23×C20), C42.87(C2×C10), C10.79(C23×C4), C4.18(C22×C20), C42⋊C219C10, C20.222(C22×C4), (C2×C10).337C24, (C2×C20).959C23, (C4×C20).371C22, C22.1(C22×C20), (D4×C10).331C22, C22.10(C23×C10), C23.29(C22×C10), (Q8×C10).283C22, (C22×C10).253C23, (C22×C20).595C22, (C2×C4×C20)⋊21C2, (C2×C4)⋊8(C2×C20), (C2×C20)⋊46(C2×C4), (C5×D4)⋊36(C2×C4), (C5×Q8)⋊33(C2×C4), C2.4(C10×C4○D4), C4⋊C4.81(C2×C10), (C10×C4○D4).27C2, (C2×C4○D4).13C10, (C2×D4).77(C2×C10), C10.223(C2×C4○D4), (C2×Q8).71(C2×C10), (C5×C42⋊C2)⋊40C2, C22⋊C4.28(C2×C10), (C5×C4⋊C4).406C22, (C22×C4).99(C2×C10), (C2×C10).133(C22×C4), (C2×C4).134(C22×C10), (C5×C22⋊C4).159C22, SmallGroup(320,1519)

Series: Derived Chief Lower central Upper central

C1C2 — C4○D4×C20
C1C2C22C2×C10C2×C20C5×C22⋊C4D4×C20 — C4○D4×C20
C1C2 — C4○D4×C20
C1C4×C20 — C4○D4×C20

Subgroups: 370 in 310 conjugacy classes, 250 normal (16 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×12], C4 [×6], C22, C22 [×6], C22 [×6], C5, C2×C4, C2×C4 [×23], C2×C4 [×12], D4 [×12], Q8 [×4], C23 [×3], C10, C10 [×2], C10 [×6], C42, C42 [×9], C22⋊C4 [×6], C4⋊C4 [×6], C22×C4 [×9], C2×D4 [×3], C2×Q8, C4○D4 [×8], C20 [×12], C20 [×6], C2×C10, C2×C10 [×6], C2×C10 [×6], C2×C42 [×3], C42⋊C2 [×3], C4×D4 [×6], C4×Q8 [×2], C2×C4○D4, C2×C20, C2×C20 [×23], C2×C20 [×12], C5×D4 [×12], C5×Q8 [×4], C22×C10 [×3], C4×C4○D4, C4×C20, C4×C20 [×9], C5×C22⋊C4 [×6], C5×C4⋊C4 [×6], C22×C20 [×9], D4×C10 [×3], Q8×C10, C5×C4○D4 [×8], C2×C4×C20 [×3], C5×C42⋊C2 [×3], D4×C20 [×6], Q8×C20 [×2], C10×C4○D4, C4○D4×C20

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, C2×C4 [×28], C23 [×15], C10 [×15], C22×C4 [×14], C4○D4 [×4], C24, C20 [×8], C2×C10 [×35], C23×C4, C2×C4○D4 [×2], C2×C20 [×28], C22×C10 [×15], C4×C4○D4, C22×C20 [×14], C5×C4○D4 [×4], C23×C10, C23×C20, C10×C4○D4 [×2], C4○D4×C20

Generators and relations
 G = < a,b,c,d | a20=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 122 156 67)(2 123 157 68)(3 124 158 69)(4 125 159 70)(5 126 160 71)(6 127 141 72)(7 128 142 73)(8 129 143 74)(9 130 144 75)(10 131 145 76)(11 132 146 77)(12 133 147 78)(13 134 148 79)(14 135 149 80)(15 136 150 61)(16 137 151 62)(17 138 152 63)(18 139 153 64)(19 140 154 65)(20 121 155 66)(21 44 95 120)(22 45 96 101)(23 46 97 102)(24 47 98 103)(25 48 99 104)(26 49 100 105)(27 50 81 106)(28 51 82 107)(29 52 83 108)(30 53 84 109)(31 54 85 110)(32 55 86 111)(33 56 87 112)(34 57 88 113)(35 58 89 114)(36 59 90 115)(37 60 91 116)(38 41 92 117)(39 42 93 118)(40 43 94 119)
(1 23 156 97)(2 24 157 98)(3 25 158 99)(4 26 159 100)(5 27 160 81)(6 28 141 82)(7 29 142 83)(8 30 143 84)(9 31 144 85)(10 32 145 86)(11 33 146 87)(12 34 147 88)(13 35 148 89)(14 36 149 90)(15 37 150 91)(16 38 151 92)(17 39 152 93)(18 40 153 94)(19 21 154 95)(20 22 155 96)(41 62 117 137)(42 63 118 138)(43 64 119 139)(44 65 120 140)(45 66 101 121)(46 67 102 122)(47 68 103 123)(48 69 104 124)(49 70 105 125)(50 71 106 126)(51 72 107 127)(52 73 108 128)(53 74 109 129)(54 75 110 130)(55 76 111 131)(56 77 112 132)(57 78 113 133)(58 79 114 134)(59 80 115 135)(60 61 116 136)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 85)(22 86)(23 87)(24 88)(25 89)(26 90)(27 91)(28 92)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 99)(36 100)(37 81)(38 82)(39 83)(40 84)(41 107)(42 108)(43 109)(44 110)(45 111)(46 112)(47 113)(48 114)(49 115)(50 116)(51 117)(52 118)(53 119)(54 120)(55 101)(56 102)(57 103)(58 104)(59 105)(60 106)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,122,156,67)(2,123,157,68)(3,124,158,69)(4,125,159,70)(5,126,160,71)(6,127,141,72)(7,128,142,73)(8,129,143,74)(9,130,144,75)(10,131,145,76)(11,132,146,77)(12,133,147,78)(13,134,148,79)(14,135,149,80)(15,136,150,61)(16,137,151,62)(17,138,152,63)(18,139,153,64)(19,140,154,65)(20,121,155,66)(21,44,95,120)(22,45,96,101)(23,46,97,102)(24,47,98,103)(25,48,99,104)(26,49,100,105)(27,50,81,106)(28,51,82,107)(29,52,83,108)(30,53,84,109)(31,54,85,110)(32,55,86,111)(33,56,87,112)(34,57,88,113)(35,58,89,114)(36,59,90,115)(37,60,91,116)(38,41,92,117)(39,42,93,118)(40,43,94,119), (1,23,156,97)(2,24,157,98)(3,25,158,99)(4,26,159,100)(5,27,160,81)(6,28,141,82)(7,29,142,83)(8,30,143,84)(9,31,144,85)(10,32,145,86)(11,33,146,87)(12,34,147,88)(13,35,148,89)(14,36,149,90)(15,37,150,91)(16,38,151,92)(17,39,152,93)(18,40,153,94)(19,21,154,95)(20,22,155,96)(41,62,117,137)(42,63,118,138)(43,64,119,139)(44,65,120,140)(45,66,101,121)(46,67,102,122)(47,68,103,123)(48,69,104,124)(49,70,105,125)(50,71,106,126)(51,72,107,127)(52,73,108,128)(53,74,109,129)(54,75,110,130)(55,76,111,131)(56,77,112,132)(57,78,113,133)(58,79,114,134)(59,80,115,135)(60,61,116,136), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,81)(38,82)(39,83)(40,84)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(49,115)(50,116)(51,117)(52,118)(53,119)(54,120)(55,101)(56,102)(57,103)(58,104)(59,105)(60,106)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,122,156,67)(2,123,157,68)(3,124,158,69)(4,125,159,70)(5,126,160,71)(6,127,141,72)(7,128,142,73)(8,129,143,74)(9,130,144,75)(10,131,145,76)(11,132,146,77)(12,133,147,78)(13,134,148,79)(14,135,149,80)(15,136,150,61)(16,137,151,62)(17,138,152,63)(18,139,153,64)(19,140,154,65)(20,121,155,66)(21,44,95,120)(22,45,96,101)(23,46,97,102)(24,47,98,103)(25,48,99,104)(26,49,100,105)(27,50,81,106)(28,51,82,107)(29,52,83,108)(30,53,84,109)(31,54,85,110)(32,55,86,111)(33,56,87,112)(34,57,88,113)(35,58,89,114)(36,59,90,115)(37,60,91,116)(38,41,92,117)(39,42,93,118)(40,43,94,119), (1,23,156,97)(2,24,157,98)(3,25,158,99)(4,26,159,100)(5,27,160,81)(6,28,141,82)(7,29,142,83)(8,30,143,84)(9,31,144,85)(10,32,145,86)(11,33,146,87)(12,34,147,88)(13,35,148,89)(14,36,149,90)(15,37,150,91)(16,38,151,92)(17,39,152,93)(18,40,153,94)(19,21,154,95)(20,22,155,96)(41,62,117,137)(42,63,118,138)(43,64,119,139)(44,65,120,140)(45,66,101,121)(46,67,102,122)(47,68,103,123)(48,69,104,124)(49,70,105,125)(50,71,106,126)(51,72,107,127)(52,73,108,128)(53,74,109,129)(54,75,110,130)(55,76,111,131)(56,77,112,132)(57,78,113,133)(58,79,114,134)(59,80,115,135)(60,61,116,136), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,81)(38,82)(39,83)(40,84)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(49,115)(50,116)(51,117)(52,118)(53,119)(54,120)(55,101)(56,102)(57,103)(58,104)(59,105)(60,106)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,122,156,67),(2,123,157,68),(3,124,158,69),(4,125,159,70),(5,126,160,71),(6,127,141,72),(7,128,142,73),(8,129,143,74),(9,130,144,75),(10,131,145,76),(11,132,146,77),(12,133,147,78),(13,134,148,79),(14,135,149,80),(15,136,150,61),(16,137,151,62),(17,138,152,63),(18,139,153,64),(19,140,154,65),(20,121,155,66),(21,44,95,120),(22,45,96,101),(23,46,97,102),(24,47,98,103),(25,48,99,104),(26,49,100,105),(27,50,81,106),(28,51,82,107),(29,52,83,108),(30,53,84,109),(31,54,85,110),(32,55,86,111),(33,56,87,112),(34,57,88,113),(35,58,89,114),(36,59,90,115),(37,60,91,116),(38,41,92,117),(39,42,93,118),(40,43,94,119)], [(1,23,156,97),(2,24,157,98),(3,25,158,99),(4,26,159,100),(5,27,160,81),(6,28,141,82),(7,29,142,83),(8,30,143,84),(9,31,144,85),(10,32,145,86),(11,33,146,87),(12,34,147,88),(13,35,148,89),(14,36,149,90),(15,37,150,91),(16,38,151,92),(17,39,152,93),(18,40,153,94),(19,21,154,95),(20,22,155,96),(41,62,117,137),(42,63,118,138),(43,64,119,139),(44,65,120,140),(45,66,101,121),(46,67,102,122),(47,68,103,123),(48,69,104,124),(49,70,105,125),(50,71,106,126),(51,72,107,127),(52,73,108,128),(53,74,109,129),(54,75,110,130),(55,76,111,131),(56,77,112,132),(57,78,113,133),(58,79,114,134),(59,80,115,135),(60,61,116,136)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,85),(22,86),(23,87),(24,88),(25,89),(26,90),(27,91),(28,92),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,99),(36,100),(37,81),(38,82),(39,83),(40,84),(41,107),(42,108),(43,109),(44,110),(45,111),(46,112),(47,113),(48,114),(49,115),(50,116),(51,117),(52,118),(53,119),(54,120),(55,101),(56,102),(57,103),(58,104),(59,105),(60,106),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)])

Matrix representation G ⊆ GL3(𝔽41) generated by

3200
0100
0010
,
100
0320
0032
,
4000
04039
011
,
100
010
04040
G:=sub<GL(3,GF(41))| [32,0,0,0,10,0,0,0,10],[1,0,0,0,32,0,0,0,32],[40,0,0,0,40,1,0,39,1],[1,0,0,0,1,40,0,0,40] >;

200 conjugacy classes

class 1 2A2B2C2D···2I4A···4L4M···4AD5A5B5C5D10A···10L10M···10AJ20A···20AV20AW···20DP
order12222···24···44···4555510···1010···1020···2020···20
size11112···21···12···211111···12···21···12···2

200 irreducible representations

dim1111111111111122
type++++++
imageC1C2C2C2C2C2C4C5C10C10C10C10C10C20C4○D4C5×C4○D4
kernelC4○D4×C20C2×C4×C20C5×C42⋊C2D4×C20Q8×C20C10×C4○D4C5×C4○D4C4×C4○D4C2×C42C42⋊C2C4×D4C4×Q8C2×C4○D4C4○D4C20C4
# reps1336211641212248464832

In GAP, Magma, Sage, TeX

C_4\circ D_4\times C_{20}
% in TeX

G:=Group("C4oD4xC20");
// GroupNames label

G:=SmallGroup(320,1519);
// by ID

G=gap.SmallGroup(320,1519);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,856,304]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽