direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×D4○C16, D4.2C40, Q8.2C40, M5(2)⋊7C10, C80.29C22, C40.83C23, M4(2).4C20, (C2×C16)⋊9C10, (C2×C80)⋊19C2, C4.5(C2×C40), (C5×D4).6C8, (C5×Q8).6C8, C8.12(C2×C20), C16.8(C2×C10), C20.68(C2×C8), C4○D4.3C20, C8○D4.3C10, C40.109(C2×C4), C22.1(C2×C40), C2.7(C22×C40), (C5×M5(2))⋊15C2, C10.60(C22×C8), C4.36(C22×C20), C8.16(C22×C10), C20.253(C22×C4), (C2×C40).449C22, (C5×M4(2)).12C4, (C5×C8○D4).6C2, (C2×C10).36(C2×C8), (C2×C4).51(C2×C20), (C5×C4○D4).11C4, (C2×C20).445(C2×C4), (C2×C8).103(C2×C10), SmallGroup(320,1005)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 90 in 84 conjugacy classes, 78 normal (18 characteristic)
C1, C2, C2 [×3], C4, C4 [×3], C22 [×3], C5, C8, C8 [×3], C2×C4 [×3], D4 [×3], Q8, C10, C10 [×3], C16, C16 [×3], C2×C8 [×3], M4(2) [×3], C4○D4, C20, C20 [×3], C2×C10 [×3], C2×C16 [×3], M5(2) [×3], C8○D4, C40, C40 [×3], C2×C20 [×3], C5×D4 [×3], C5×Q8, D4○C16, C80, C80 [×3], C2×C40 [×3], C5×M4(2) [×3], C5×C4○D4, C2×C80 [×3], C5×M5(2) [×3], C5×C8○D4, C5×D4○C16
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C5, C8 [×4], C2×C4 [×6], C23, C10 [×7], C2×C8 [×6], C22×C4, C20 [×4], C2×C10 [×7], C22×C8, C40 [×4], C2×C20 [×6], C22×C10, D4○C16, C2×C40 [×6], C22×C20, C22×C40, C5×D4○C16
Generators and relations
G = < a,b,c,d | a5=b4=c2=1, d8=b2, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, cd=dc >
(1 89 117 73 27)(2 90 118 74 28)(3 91 119 75 29)(4 92 120 76 30)(5 93 121 77 31)(6 94 122 78 32)(7 95 123 79 17)(8 96 124 80 18)(9 81 125 65 19)(10 82 126 66 20)(11 83 127 67 21)(12 84 128 68 22)(13 85 113 69 23)(14 86 114 70 24)(15 87 115 71 25)(16 88 116 72 26)(33 98 60 140 158)(34 99 61 141 159)(35 100 62 142 160)(36 101 63 143 145)(37 102 64 144 146)(38 103 49 129 147)(39 104 50 130 148)(40 105 51 131 149)(41 106 52 132 150)(42 107 53 133 151)(43 108 54 134 152)(44 109 55 135 153)(45 110 56 136 154)(46 111 57 137 155)(47 112 58 138 156)(48 97 59 139 157)
(1 147 9 155)(2 148 10 156)(3 149 11 157)(4 150 12 158)(5 151 13 159)(6 152 14 160)(7 153 15 145)(8 154 16 146)(17 135 25 143)(18 136 26 144)(19 137 27 129)(20 138 28 130)(21 139 29 131)(22 140 30 132)(23 141 31 133)(24 142 32 134)(33 92 41 84)(34 93 42 85)(35 94 43 86)(36 95 44 87)(37 96 45 88)(38 81 46 89)(39 82 47 90)(40 83 48 91)(49 65 57 73)(50 66 58 74)(51 67 59 75)(52 68 60 76)(53 69 61 77)(54 70 62 78)(55 71 63 79)(56 72 64 80)(97 119 105 127)(98 120 106 128)(99 121 107 113)(100 122 108 114)(101 123 109 115)(102 124 110 116)(103 125 111 117)(104 126 112 118)
(1 155)(2 156)(3 157)(4 158)(5 159)(6 160)(7 145)(8 146)(9 147)(10 148)(11 149)(12 150)(13 151)(14 152)(15 153)(16 154)(17 143)(18 144)(19 129)(20 130)(21 131)(22 132)(23 133)(24 134)(25 135)(26 136)(27 137)(28 138)(29 139)(30 140)(31 141)(32 142)(33 92)(34 93)(35 94)(36 95)(37 96)(38 81)(39 82)(40 83)(41 84)(42 85)(43 86)(44 87)(45 88)(46 89)(47 90)(48 91)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(57 73)(58 74)(59 75)(60 76)(61 77)(62 78)(63 79)(64 80)(97 119)(98 120)(99 121)(100 122)(101 123)(102 124)(103 125)(104 126)(105 127)(106 128)(107 113)(108 114)(109 115)(110 116)(111 117)(112 118)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,89,117,73,27)(2,90,118,74,28)(3,91,119,75,29)(4,92,120,76,30)(5,93,121,77,31)(6,94,122,78,32)(7,95,123,79,17)(8,96,124,80,18)(9,81,125,65,19)(10,82,126,66,20)(11,83,127,67,21)(12,84,128,68,22)(13,85,113,69,23)(14,86,114,70,24)(15,87,115,71,25)(16,88,116,72,26)(33,98,60,140,158)(34,99,61,141,159)(35,100,62,142,160)(36,101,63,143,145)(37,102,64,144,146)(38,103,49,129,147)(39,104,50,130,148)(40,105,51,131,149)(41,106,52,132,150)(42,107,53,133,151)(43,108,54,134,152)(44,109,55,135,153)(45,110,56,136,154)(46,111,57,137,155)(47,112,58,138,156)(48,97,59,139,157), (1,147,9,155)(2,148,10,156)(3,149,11,157)(4,150,12,158)(5,151,13,159)(6,152,14,160)(7,153,15,145)(8,154,16,146)(17,135,25,143)(18,136,26,144)(19,137,27,129)(20,138,28,130)(21,139,29,131)(22,140,30,132)(23,141,31,133)(24,142,32,134)(33,92,41,84)(34,93,42,85)(35,94,43,86)(36,95,44,87)(37,96,45,88)(38,81,46,89)(39,82,47,90)(40,83,48,91)(49,65,57,73)(50,66,58,74)(51,67,59,75)(52,68,60,76)(53,69,61,77)(54,70,62,78)(55,71,63,79)(56,72,64,80)(97,119,105,127)(98,120,106,128)(99,121,107,113)(100,122,108,114)(101,123,109,115)(102,124,110,116)(103,125,111,117)(104,126,112,118), (1,155)(2,156)(3,157)(4,158)(5,159)(6,160)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,153)(16,154)(17,143)(18,144)(19,129)(20,130)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,92)(34,93)(35,94)(36,95)(37,96)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79)(64,80)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,113)(108,114)(109,115)(110,116)(111,117)(112,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;
G:=Group( (1,89,117,73,27)(2,90,118,74,28)(3,91,119,75,29)(4,92,120,76,30)(5,93,121,77,31)(6,94,122,78,32)(7,95,123,79,17)(8,96,124,80,18)(9,81,125,65,19)(10,82,126,66,20)(11,83,127,67,21)(12,84,128,68,22)(13,85,113,69,23)(14,86,114,70,24)(15,87,115,71,25)(16,88,116,72,26)(33,98,60,140,158)(34,99,61,141,159)(35,100,62,142,160)(36,101,63,143,145)(37,102,64,144,146)(38,103,49,129,147)(39,104,50,130,148)(40,105,51,131,149)(41,106,52,132,150)(42,107,53,133,151)(43,108,54,134,152)(44,109,55,135,153)(45,110,56,136,154)(46,111,57,137,155)(47,112,58,138,156)(48,97,59,139,157), (1,147,9,155)(2,148,10,156)(3,149,11,157)(4,150,12,158)(5,151,13,159)(6,152,14,160)(7,153,15,145)(8,154,16,146)(17,135,25,143)(18,136,26,144)(19,137,27,129)(20,138,28,130)(21,139,29,131)(22,140,30,132)(23,141,31,133)(24,142,32,134)(33,92,41,84)(34,93,42,85)(35,94,43,86)(36,95,44,87)(37,96,45,88)(38,81,46,89)(39,82,47,90)(40,83,48,91)(49,65,57,73)(50,66,58,74)(51,67,59,75)(52,68,60,76)(53,69,61,77)(54,70,62,78)(55,71,63,79)(56,72,64,80)(97,119,105,127)(98,120,106,128)(99,121,107,113)(100,122,108,114)(101,123,109,115)(102,124,110,116)(103,125,111,117)(104,126,112,118), (1,155)(2,156)(3,157)(4,158)(5,159)(6,160)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,153)(16,154)(17,143)(18,144)(19,129)(20,130)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,92)(34,93)(35,94)(36,95)(37,96)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79)(64,80)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,113)(108,114)(109,115)(110,116)(111,117)(112,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );
G=PermutationGroup([(1,89,117,73,27),(2,90,118,74,28),(3,91,119,75,29),(4,92,120,76,30),(5,93,121,77,31),(6,94,122,78,32),(7,95,123,79,17),(8,96,124,80,18),(9,81,125,65,19),(10,82,126,66,20),(11,83,127,67,21),(12,84,128,68,22),(13,85,113,69,23),(14,86,114,70,24),(15,87,115,71,25),(16,88,116,72,26),(33,98,60,140,158),(34,99,61,141,159),(35,100,62,142,160),(36,101,63,143,145),(37,102,64,144,146),(38,103,49,129,147),(39,104,50,130,148),(40,105,51,131,149),(41,106,52,132,150),(42,107,53,133,151),(43,108,54,134,152),(44,109,55,135,153),(45,110,56,136,154),(46,111,57,137,155),(47,112,58,138,156),(48,97,59,139,157)], [(1,147,9,155),(2,148,10,156),(3,149,11,157),(4,150,12,158),(5,151,13,159),(6,152,14,160),(7,153,15,145),(8,154,16,146),(17,135,25,143),(18,136,26,144),(19,137,27,129),(20,138,28,130),(21,139,29,131),(22,140,30,132),(23,141,31,133),(24,142,32,134),(33,92,41,84),(34,93,42,85),(35,94,43,86),(36,95,44,87),(37,96,45,88),(38,81,46,89),(39,82,47,90),(40,83,48,91),(49,65,57,73),(50,66,58,74),(51,67,59,75),(52,68,60,76),(53,69,61,77),(54,70,62,78),(55,71,63,79),(56,72,64,80),(97,119,105,127),(98,120,106,128),(99,121,107,113),(100,122,108,114),(101,123,109,115),(102,124,110,116),(103,125,111,117),(104,126,112,118)], [(1,155),(2,156),(3,157),(4,158),(5,159),(6,160),(7,145),(8,146),(9,147),(10,148),(11,149),(12,150),(13,151),(14,152),(15,153),(16,154),(17,143),(18,144),(19,129),(20,130),(21,131),(22,132),(23,133),(24,134),(25,135),(26,136),(27,137),(28,138),(29,139),(30,140),(31,141),(32,142),(33,92),(34,93),(35,94),(36,95),(37,96),(38,81),(39,82),(40,83),(41,84),(42,85),(43,86),(44,87),(45,88),(46,89),(47,90),(48,91),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(57,73),(58,74),(59,75),(60,76),(61,77),(62,78),(63,79),(64,80),(97,119),(98,120),(99,121),(100,122),(101,123),(102,124),(103,125),(104,126),(105,127),(106,128),(107,113),(108,114),(109,115),(110,116),(111,117),(112,118)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)])
Matrix representation ►G ⊆ GL3(𝔽241) generated by
| 91 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
| 240 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 240 | 0 |
| 1 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 240 | 0 | 0 |
| 0 | 111 | 0 |
| 0 | 0 | 111 |
G:=sub<GL(3,GF(241))| [91,0,0,0,1,0,0,0,1],[240,0,0,0,0,240,0,1,0],[1,0,0,0,0,1,0,1,0],[240,0,0,0,111,0,0,0,111] >;
200 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 8E | ··· | 8J | 10A | 10B | 10C | 10D | 10E | ··· | 10P | 16A | ··· | 16H | 16I | ··· | 16T | 20A | ··· | 20H | 20I | ··· | 20T | 40A | ··· | 40P | 40Q | ··· | 40AN | 80A | ··· | 80AF | 80AG | ··· | 80CB |
| order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 16 | ··· | 16 | 16 | ··· | 16 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 | 40 | ··· | 40 | 80 | ··· | 80 | 80 | ··· | 80 |
| size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
200 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| type | + | + | + | + | ||||||||||||||
| image | C1 | C2 | C2 | C2 | C4 | C4 | C5 | C8 | C8 | C10 | C10 | C10 | C20 | C20 | C40 | C40 | D4○C16 | C5×D4○C16 |
| kernel | C5×D4○C16 | C2×C80 | C5×M5(2) | C5×C8○D4 | C5×M4(2) | C5×C4○D4 | D4○C16 | C5×D4 | C5×Q8 | C2×C16 | M5(2) | C8○D4 | M4(2) | C4○D4 | D4 | Q8 | C5 | C1 |
| # reps | 1 | 3 | 3 | 1 | 6 | 2 | 4 | 12 | 4 | 12 | 12 | 4 | 24 | 8 | 48 | 16 | 8 | 32 |
In GAP, Magma, Sage, TeX
C_5\times D_4\circ C_{16} % in TeX
G:=Group("C5xD4oC16"); // GroupNames label
G:=SmallGroup(320,1005);
// by ID
G=gap.SmallGroup(320,1005);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,280,1731,102,124]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^4=c^2=1,d^8=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,c*d=d*c>;
// generators/relations