direct product, metabelian, nilpotent (class 4), monomial, 2-elementary
Aliases: C10×D16, C40.72D4, C20.44D8, C80⋊10C22, C40.72C23, C4.6(C5×D8), C8.9(C5×D4), C16⋊2(C2×C10), (C2×C80)⋊12C2, (C2×C16)⋊5C10, (C2×D8)⋊6C10, D8⋊1(C2×C10), C4.7(D4×C10), (C10×D8)⋊20C2, (C2×C10).55D8, C10.84(C2×D8), C2.12(C10×D8), C20.314(C2×D4), (C2×C20).426D4, (C5×D8)⋊17C22, C8.3(C22×C10), C22.14(C5×D8), (C2×C40).426C22, (C2×C4).82(C5×D4), (C2×C8).84(C2×C10), SmallGroup(320,1006)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 274 in 98 conjugacy classes, 50 normal (22 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C22, C22 [×8], C5, C8 [×2], C2×C4, D4 [×6], C23 [×2], C10, C10 [×2], C10 [×4], C16 [×2], C2×C8, D8 [×4], D8 [×2], C2×D4 [×2], C20 [×2], C2×C10, C2×C10 [×8], C2×C16, D16 [×4], C2×D8 [×2], C40 [×2], C2×C20, C5×D4 [×6], C22×C10 [×2], C2×D16, C80 [×2], C2×C40, C5×D8 [×4], C5×D8 [×2], D4×C10 [×2], C2×C80, C5×D16 [×4], C10×D8 [×2], C10×D16
Quotients:
C1, C2 [×7], C22 [×7], C5, D4 [×2], C23, C10 [×7], D8 [×2], C2×D4, C2×C10 [×7], D16 [×2], C2×D8, C5×D4 [×2], C22×C10, C2×D16, C5×D8 [×2], D4×C10, C5×D16 [×2], C10×D8, C10×D16
Generators and relations
G = < a,b,c | a10=b16=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 101 74 114 33 54 19 131 91 147)(2 102 75 115 34 55 20 132 92 148)(3 103 76 116 35 56 21 133 93 149)(4 104 77 117 36 57 22 134 94 150)(5 105 78 118 37 58 23 135 95 151)(6 106 79 119 38 59 24 136 96 152)(7 107 80 120 39 60 25 137 81 153)(8 108 65 121 40 61 26 138 82 154)(9 109 66 122 41 62 27 139 83 155)(10 110 67 123 42 63 28 140 84 156)(11 111 68 124 43 64 29 141 85 157)(12 112 69 125 44 49 30 142 86 158)(13 97 70 126 45 50 31 143 87 159)(14 98 71 127 46 51 32 144 88 160)(15 99 72 128 47 52 17 129 89 145)(16 100 73 113 48 53 18 130 90 146)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 61)(2 60)(3 59)(4 58)(5 57)(6 56)(7 55)(8 54)(9 53)(10 52)(11 51)(12 50)(13 49)(14 64)(15 63)(16 62)(17 110)(18 109)(19 108)(20 107)(21 106)(22 105)(23 104)(24 103)(25 102)(26 101)(27 100)(28 99)(29 98)(30 97)(31 112)(32 111)(33 154)(34 153)(35 152)(36 151)(37 150)(38 149)(39 148)(40 147)(41 146)(42 145)(43 160)(44 159)(45 158)(46 157)(47 156)(48 155)(65 131)(66 130)(67 129)(68 144)(69 143)(70 142)(71 141)(72 140)(73 139)(74 138)(75 137)(76 136)(77 135)(78 134)(79 133)(80 132)(81 115)(82 114)(83 113)(84 128)(85 127)(86 126)(87 125)(88 124)(89 123)(90 122)(91 121)(92 120)(93 119)(94 118)(95 117)(96 116)
G:=sub<Sym(160)| (1,101,74,114,33,54,19,131,91,147)(2,102,75,115,34,55,20,132,92,148)(3,103,76,116,35,56,21,133,93,149)(4,104,77,117,36,57,22,134,94,150)(5,105,78,118,37,58,23,135,95,151)(6,106,79,119,38,59,24,136,96,152)(7,107,80,120,39,60,25,137,81,153)(8,108,65,121,40,61,26,138,82,154)(9,109,66,122,41,62,27,139,83,155)(10,110,67,123,42,63,28,140,84,156)(11,111,68,124,43,64,29,141,85,157)(12,112,69,125,44,49,30,142,86,158)(13,97,70,126,45,50,31,143,87,159)(14,98,71,127,46,51,32,144,88,160)(15,99,72,128,47,52,17,129,89,145)(16,100,73,113,48,53,18,130,90,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61)(2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,64)(15,63)(16,62)(17,110)(18,109)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,100)(28,99)(29,98)(30,97)(31,112)(32,111)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,160)(44,159)(45,158)(46,157)(47,156)(48,155)(65,131)(66,130)(67,129)(68,144)(69,143)(70,142)(71,141)(72,140)(73,139)(74,138)(75,137)(76,136)(77,135)(78,134)(79,133)(80,132)(81,115)(82,114)(83,113)(84,128)(85,127)(86,126)(87,125)(88,124)(89,123)(90,122)(91,121)(92,120)(93,119)(94,118)(95,117)(96,116)>;
G:=Group( (1,101,74,114,33,54,19,131,91,147)(2,102,75,115,34,55,20,132,92,148)(3,103,76,116,35,56,21,133,93,149)(4,104,77,117,36,57,22,134,94,150)(5,105,78,118,37,58,23,135,95,151)(6,106,79,119,38,59,24,136,96,152)(7,107,80,120,39,60,25,137,81,153)(8,108,65,121,40,61,26,138,82,154)(9,109,66,122,41,62,27,139,83,155)(10,110,67,123,42,63,28,140,84,156)(11,111,68,124,43,64,29,141,85,157)(12,112,69,125,44,49,30,142,86,158)(13,97,70,126,45,50,31,143,87,159)(14,98,71,127,46,51,32,144,88,160)(15,99,72,128,47,52,17,129,89,145)(16,100,73,113,48,53,18,130,90,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61)(2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,64)(15,63)(16,62)(17,110)(18,109)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,100)(28,99)(29,98)(30,97)(31,112)(32,111)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,160)(44,159)(45,158)(46,157)(47,156)(48,155)(65,131)(66,130)(67,129)(68,144)(69,143)(70,142)(71,141)(72,140)(73,139)(74,138)(75,137)(76,136)(77,135)(78,134)(79,133)(80,132)(81,115)(82,114)(83,113)(84,128)(85,127)(86,126)(87,125)(88,124)(89,123)(90,122)(91,121)(92,120)(93,119)(94,118)(95,117)(96,116) );
G=PermutationGroup([(1,101,74,114,33,54,19,131,91,147),(2,102,75,115,34,55,20,132,92,148),(3,103,76,116,35,56,21,133,93,149),(4,104,77,117,36,57,22,134,94,150),(5,105,78,118,37,58,23,135,95,151),(6,106,79,119,38,59,24,136,96,152),(7,107,80,120,39,60,25,137,81,153),(8,108,65,121,40,61,26,138,82,154),(9,109,66,122,41,62,27,139,83,155),(10,110,67,123,42,63,28,140,84,156),(11,111,68,124,43,64,29,141,85,157),(12,112,69,125,44,49,30,142,86,158),(13,97,70,126,45,50,31,143,87,159),(14,98,71,127,46,51,32,144,88,160),(15,99,72,128,47,52,17,129,89,145),(16,100,73,113,48,53,18,130,90,146)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,61),(2,60),(3,59),(4,58),(5,57),(6,56),(7,55),(8,54),(9,53),(10,52),(11,51),(12,50),(13,49),(14,64),(15,63),(16,62),(17,110),(18,109),(19,108),(20,107),(21,106),(22,105),(23,104),(24,103),(25,102),(26,101),(27,100),(28,99),(29,98),(30,97),(31,112),(32,111),(33,154),(34,153),(35,152),(36,151),(37,150),(38,149),(39,148),(40,147),(41,146),(42,145),(43,160),(44,159),(45,158),(46,157),(47,156),(48,155),(65,131),(66,130),(67,129),(68,144),(69,143),(70,142),(71,141),(72,140),(73,139),(74,138),(75,137),(76,136),(77,135),(78,134),(79,133),(80,132),(81,115),(82,114),(83,113),(84,128),(85,127),(86,126),(87,125),(88,124),(89,123),(90,122),(91,121),(92,120),(93,119),(94,118),(95,117),(96,116)])
Matrix representation ►G ⊆ GL3(𝔽241) generated by
| 240 | 0 | 0 |
| 0 | 91 | 0 |
| 0 | 0 | 91 |
| 1 | 0 | 0 |
| 0 | 156 | 27 |
| 0 | 214 | 156 |
| 1 | 0 | 0 |
| 0 | 85 | 214 |
| 0 | 214 | 156 |
G:=sub<GL(3,GF(241))| [240,0,0,0,91,0,0,0,91],[1,0,0,0,156,214,0,27,156],[1,0,0,0,85,214,0,214,156] >;
110 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | ··· | 10L | 10M | ··· | 10AB | 16A | ··· | 16H | 20A | ··· | 20H | 40A | ··· | 40P | 80A | ··· | 80AF |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 40 | ··· | 40 | 80 | ··· | 80 |
| size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 8 | ··· | 8 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
110 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | |||||||||
| image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | D4 | D8 | D8 | D16 | C5×D4 | C5×D4 | C5×D8 | C5×D8 | C5×D16 |
| kernel | C10×D16 | C2×C80 | C5×D16 | C10×D8 | C2×D16 | C2×C16 | D16 | C2×D8 | C40 | C2×C20 | C20 | C2×C10 | C10 | C8 | C2×C4 | C4 | C22 | C2 |
| # reps | 1 | 1 | 4 | 2 | 4 | 4 | 16 | 8 | 1 | 1 | 2 | 2 | 8 | 4 | 4 | 8 | 8 | 32 |
In GAP, Magma, Sage, TeX
C_{10}\times D_{16} % in TeX
G:=Group("C10xD16"); // GroupNames label
G:=SmallGroup(320,1006);
// by ID
G=gap.SmallGroup(320,1006);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,4204,2111,242,10085,5052,124]);
// Polycyclic
G:=Group<a,b,c|a^10=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations