Copied to
clipboard

?

G = C5×D43Q8order 320 = 26·5

Direct product of C5 and D43Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×D43Q8, C10.1652+ (1+4), D43(C5×Q8), C4⋊Q815C10, (C5×D4)⋊10Q8, (C4×Q8)⋊15C10, (Q8×C20)⋊35C2, C4.18(Q8×C10), (C4×D4).12C10, (D4×C20).27C2, C22⋊Q817C10, C20.124(C2×Q8), C22.6(Q8×C10), C42.48(C2×C10), C42.C210C10, C20.325(C4○D4), C10.64(C22×Q8), (C2×C10).374C24, (C4×C20).289C22, (C2×C20).680C23, (D4×C10).335C22, C22.48(C23×C10), C23.45(C22×C10), (Q8×C10).184C22, C2.17(C5×2+ (1+4)), (C22×C20).459C22, (C22×C10).268C23, (C5×C4⋊Q8)⋊36C2, (C2×C4⋊C4)⋊23C10, (C10×C4⋊C4)⋊50C2, C2.10(Q8×C2×C10), C4.37(C5×C4○D4), C4⋊C4.74(C2×C10), C2.27(C10×C4○D4), (C5×C22⋊Q8)⋊44C2, (C2×C10).55(C2×Q8), (C2×D4).81(C2×C10), C10.246(C2×C4○D4), (C2×Q8).64(C2×C10), (C5×C42.C2)⋊27C2, (C5×C4⋊C4).400C22, C22⋊C4.24(C2×C10), (C2×C4).36(C22×C10), (C22×C4).70(C2×C10), (C5×C22⋊C4).156C22, SmallGroup(320,1556)

Series: Derived Chief Lower central Upper central

C1C22 — C5×D43Q8
C1C2C22C2×C10C2×C20C5×C4⋊C4C5×C22⋊Q8 — C5×D43Q8
C1C22 — C5×D43Q8
C1C2×C10 — C5×D43Q8

Subgroups: 314 in 228 conjugacy classes, 166 normal (34 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×11], C22, C22 [×4], C22 [×4], C5, C2×C4 [×3], C2×C4 [×10], C2×C4 [×8], D4 [×4], Q8 [×4], C23 [×2], C10 [×3], C10 [×4], C42, C42 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×14], C22×C4 [×6], C2×D4, C2×Q8, C2×Q8 [×2], C20 [×4], C20 [×11], C2×C10, C2×C10 [×4], C2×C10 [×4], C2×C4⋊C4 [×2], C4×D4, C4×D4 [×2], C4×Q8, C22⋊Q8 [×6], C42.C2 [×2], C4⋊Q8, C2×C20 [×3], C2×C20 [×10], C2×C20 [×8], C5×D4 [×4], C5×Q8 [×4], C22×C10 [×2], D43Q8, C4×C20, C4×C20 [×2], C5×C22⋊C4 [×6], C5×C4⋊C4 [×2], C5×C4⋊C4 [×14], C22×C20 [×6], D4×C10, Q8×C10, Q8×C10 [×2], C10×C4⋊C4 [×2], D4×C20, D4×C20 [×2], Q8×C20, C5×C22⋊Q8 [×6], C5×C42.C2 [×2], C5×C4⋊Q8, C5×D43Q8

Quotients:
C1, C2 [×15], C22 [×35], C5, Q8 [×4], C23 [×15], C10 [×15], C2×Q8 [×6], C4○D4 [×2], C24, C2×C10 [×35], C22×Q8, C2×C4○D4, 2+ (1+4), C5×Q8 [×4], C22×C10 [×15], D43Q8, Q8×C10 [×6], C5×C4○D4 [×2], C23×C10, Q8×C2×C10, C10×C4○D4, C5×2+ (1+4), C5×D43Q8

Generators and relations
 G = < a,b,c,d,e | a5=b4=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b2c, ede-1=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 131 21 126)(2 132 22 127)(3 133 23 128)(4 134 24 129)(5 135 25 130)(6 61 156 56)(7 62 157 57)(8 63 158 58)(9 64 159 59)(10 65 160 60)(11 66 16 71)(12 67 17 72)(13 68 18 73)(14 69 19 74)(15 70 20 75)(26 121 31 116)(27 122 32 117)(28 123 33 118)(29 124 34 119)(30 125 35 120)(36 101 41 96)(37 102 42 97)(38 103 43 98)(39 104 44 99)(40 105 45 100)(46 111 51 106)(47 112 52 107)(48 113 53 108)(49 114 54 109)(50 115 55 110)(76 151 81 146)(77 152 82 147)(78 153 83 148)(79 154 84 149)(80 155 85 150)(86 141 91 136)(87 142 92 137)(88 143 93 138)(89 144 94 139)(90 145 95 140)
(1 126)(2 127)(3 128)(4 129)(5 130)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 131)(22 132)(23 133)(24 134)(25 135)(26 116)(27 117)(28 118)(29 119)(30 120)(31 121)(32 122)(33 123)(34 124)(35 125)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 156)(57 157)(58 158)(59 159)(60 160)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 155)(86 136)(87 137)(88 138)(89 139)(90 140)(91 141)(92 142)(93 143)(94 144)(95 145)
(1 46 26 36)(2 47 27 37)(3 48 28 38)(4 49 29 39)(5 50 30 40)(6 151 16 141)(7 152 17 142)(8 153 18 143)(9 154 19 144)(10 155 20 145)(11 136 156 146)(12 137 157 147)(13 138 158 148)(14 139 159 149)(15 140 160 150)(21 51 31 41)(22 52 32 42)(23 53 33 43)(24 54 34 44)(25 55 35 45)(56 76 66 86)(57 77 67 87)(58 78 68 88)(59 79 69 89)(60 80 70 90)(61 81 71 91)(62 82 72 92)(63 83 73 93)(64 84 74 94)(65 85 75 95)(96 126 106 116)(97 127 107 117)(98 128 108 118)(99 129 109 119)(100 130 110 120)(101 131 111 121)(102 132 112 122)(103 133 113 123)(104 134 114 124)(105 135 115 125)
(1 11 26 156)(2 12 27 157)(3 13 28 158)(4 14 29 159)(5 15 30 160)(6 21 16 31)(7 22 17 32)(8 23 18 33)(9 24 19 34)(10 25 20 35)(36 136 46 146)(37 137 47 147)(38 138 48 148)(39 139 49 149)(40 140 50 150)(41 141 51 151)(42 142 52 152)(43 143 53 153)(44 144 54 154)(45 145 55 155)(56 131 66 121)(57 132 67 122)(58 133 68 123)(59 134 69 124)(60 135 70 125)(61 126 71 116)(62 127 72 117)(63 128 73 118)(64 129 74 119)(65 130 75 120)(76 101 86 111)(77 102 87 112)(78 103 88 113)(79 104 89 114)(80 105 90 115)(81 96 91 106)(82 97 92 107)(83 98 93 108)(84 99 94 109)(85 100 95 110)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,131,21,126)(2,132,22,127)(3,133,23,128)(4,134,24,129)(5,135,25,130)(6,61,156,56)(7,62,157,57)(8,63,158,58)(9,64,159,59)(10,65,160,60)(11,66,16,71)(12,67,17,72)(13,68,18,73)(14,69,19,74)(15,70,20,75)(26,121,31,116)(27,122,32,117)(28,123,33,118)(29,124,34,119)(30,125,35,120)(36,101,41,96)(37,102,42,97)(38,103,43,98)(39,104,44,99)(40,105,45,100)(46,111,51,106)(47,112,52,107)(48,113,53,108)(49,114,54,109)(50,115,55,110)(76,151,81,146)(77,152,82,147)(78,153,83,148)(79,154,84,149)(80,155,85,150)(86,141,91,136)(87,142,92,137)(88,143,93,138)(89,144,94,139)(90,145,95,140), (1,126)(2,127)(3,128)(4,129)(5,130)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,131)(22,132)(23,133)(24,134)(25,135)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,156)(57,157)(58,158)(59,159)(60,160)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,155)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,145), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,76,66,86)(57,77,67,87)(58,78,68,88)(59,79,69,89)(60,80,70,90)(61,81,71,91)(62,82,72,92)(63,83,73,93)(64,84,74,94)(65,85,75,95)(96,126,106,116)(97,127,107,117)(98,128,108,118)(99,129,109,119)(100,130,110,120)(101,131,111,121)(102,132,112,122)(103,133,113,123)(104,134,114,124)(105,135,115,125), (1,11,26,156)(2,12,27,157)(3,13,28,158)(4,14,29,159)(5,15,30,160)(6,21,16,31)(7,22,17,32)(8,23,18,33)(9,24,19,34)(10,25,20,35)(36,136,46,146)(37,137,47,147)(38,138,48,148)(39,139,49,149)(40,140,50,150)(41,141,51,151)(42,142,52,152)(43,143,53,153)(44,144,54,154)(45,145,55,155)(56,131,66,121)(57,132,67,122)(58,133,68,123)(59,134,69,124)(60,135,70,125)(61,126,71,116)(62,127,72,117)(63,128,73,118)(64,129,74,119)(65,130,75,120)(76,101,86,111)(77,102,87,112)(78,103,88,113)(79,104,89,114)(80,105,90,115)(81,96,91,106)(82,97,92,107)(83,98,93,108)(84,99,94,109)(85,100,95,110)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,131,21,126)(2,132,22,127)(3,133,23,128)(4,134,24,129)(5,135,25,130)(6,61,156,56)(7,62,157,57)(8,63,158,58)(9,64,159,59)(10,65,160,60)(11,66,16,71)(12,67,17,72)(13,68,18,73)(14,69,19,74)(15,70,20,75)(26,121,31,116)(27,122,32,117)(28,123,33,118)(29,124,34,119)(30,125,35,120)(36,101,41,96)(37,102,42,97)(38,103,43,98)(39,104,44,99)(40,105,45,100)(46,111,51,106)(47,112,52,107)(48,113,53,108)(49,114,54,109)(50,115,55,110)(76,151,81,146)(77,152,82,147)(78,153,83,148)(79,154,84,149)(80,155,85,150)(86,141,91,136)(87,142,92,137)(88,143,93,138)(89,144,94,139)(90,145,95,140), (1,126)(2,127)(3,128)(4,129)(5,130)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,131)(22,132)(23,133)(24,134)(25,135)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,156)(57,157)(58,158)(59,159)(60,160)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,155)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,145), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,76,66,86)(57,77,67,87)(58,78,68,88)(59,79,69,89)(60,80,70,90)(61,81,71,91)(62,82,72,92)(63,83,73,93)(64,84,74,94)(65,85,75,95)(96,126,106,116)(97,127,107,117)(98,128,108,118)(99,129,109,119)(100,130,110,120)(101,131,111,121)(102,132,112,122)(103,133,113,123)(104,134,114,124)(105,135,115,125), (1,11,26,156)(2,12,27,157)(3,13,28,158)(4,14,29,159)(5,15,30,160)(6,21,16,31)(7,22,17,32)(8,23,18,33)(9,24,19,34)(10,25,20,35)(36,136,46,146)(37,137,47,147)(38,138,48,148)(39,139,49,149)(40,140,50,150)(41,141,51,151)(42,142,52,152)(43,143,53,153)(44,144,54,154)(45,145,55,155)(56,131,66,121)(57,132,67,122)(58,133,68,123)(59,134,69,124)(60,135,70,125)(61,126,71,116)(62,127,72,117)(63,128,73,118)(64,129,74,119)(65,130,75,120)(76,101,86,111)(77,102,87,112)(78,103,88,113)(79,104,89,114)(80,105,90,115)(81,96,91,106)(82,97,92,107)(83,98,93,108)(84,99,94,109)(85,100,95,110) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,131,21,126),(2,132,22,127),(3,133,23,128),(4,134,24,129),(5,135,25,130),(6,61,156,56),(7,62,157,57),(8,63,158,58),(9,64,159,59),(10,65,160,60),(11,66,16,71),(12,67,17,72),(13,68,18,73),(14,69,19,74),(15,70,20,75),(26,121,31,116),(27,122,32,117),(28,123,33,118),(29,124,34,119),(30,125,35,120),(36,101,41,96),(37,102,42,97),(38,103,43,98),(39,104,44,99),(40,105,45,100),(46,111,51,106),(47,112,52,107),(48,113,53,108),(49,114,54,109),(50,115,55,110),(76,151,81,146),(77,152,82,147),(78,153,83,148),(79,154,84,149),(80,155,85,150),(86,141,91,136),(87,142,92,137),(88,143,93,138),(89,144,94,139),(90,145,95,140)], [(1,126),(2,127),(3,128),(4,129),(5,130),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,131),(22,132),(23,133),(24,134),(25,135),(26,116),(27,117),(28,118),(29,119),(30,120),(31,121),(32,122),(33,123),(34,124),(35,125),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,156),(57,157),(58,158),(59,159),(60,160),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,155),(86,136),(87,137),(88,138),(89,139),(90,140),(91,141),(92,142),(93,143),(94,144),(95,145)], [(1,46,26,36),(2,47,27,37),(3,48,28,38),(4,49,29,39),(5,50,30,40),(6,151,16,141),(7,152,17,142),(8,153,18,143),(9,154,19,144),(10,155,20,145),(11,136,156,146),(12,137,157,147),(13,138,158,148),(14,139,159,149),(15,140,160,150),(21,51,31,41),(22,52,32,42),(23,53,33,43),(24,54,34,44),(25,55,35,45),(56,76,66,86),(57,77,67,87),(58,78,68,88),(59,79,69,89),(60,80,70,90),(61,81,71,91),(62,82,72,92),(63,83,73,93),(64,84,74,94),(65,85,75,95),(96,126,106,116),(97,127,107,117),(98,128,108,118),(99,129,109,119),(100,130,110,120),(101,131,111,121),(102,132,112,122),(103,133,113,123),(104,134,114,124),(105,135,115,125)], [(1,11,26,156),(2,12,27,157),(3,13,28,158),(4,14,29,159),(5,15,30,160),(6,21,16,31),(7,22,17,32),(8,23,18,33),(9,24,19,34),(10,25,20,35),(36,136,46,146),(37,137,47,147),(38,138,48,148),(39,139,49,149),(40,140,50,150),(41,141,51,151),(42,142,52,152),(43,143,53,153),(44,144,54,154),(45,145,55,155),(56,131,66,121),(57,132,67,122),(58,133,68,123),(59,134,69,124),(60,135,70,125),(61,126,71,116),(62,127,72,117),(63,128,73,118),(64,129,74,119),(65,130,75,120),(76,101,86,111),(77,102,87,112),(78,103,88,113),(79,104,89,114),(80,105,90,115),(81,96,91,106),(82,97,92,107),(83,98,93,108),(84,99,94,109),(85,100,95,110)])

Matrix representation G ⊆ GL4(𝔽41) generated by

18000
01800
00160
00016
,
1000
0100
001339
00328
,
1000
0100
001339
00228
,
0100
40000
0010
0001
,
203800
382100
003523
00276
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,13,3,0,0,39,28],[1,0,0,0,0,1,0,0,0,0,13,2,0,0,39,28],[0,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[20,38,0,0,38,21,0,0,0,0,35,27,0,0,23,6] >;

125 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I···4Q5A5B5C5D10A···10L10M···10AB20A···20AF20AG···20BP
order122222224···44···4555510···1010···1020···2020···20
size111122222···24···411111···12···22···24···4

125 irreducible representations

dim11111111111111222244
type+++++++-+
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10Q8C4○D4C5×Q8C5×C4○D42+ (1+4)C5×2+ (1+4)
kernelC5×D43Q8C10×C4⋊C4D4×C20Q8×C20C5×C22⋊Q8C5×C42.C2C5×C4⋊Q8D43Q8C2×C4⋊C4C4×D4C4×Q8C22⋊Q8C42.C2C4⋊Q8C5×D4C20D4C4C10C2
# reps123162148124248444161614

In GAP, Magma, Sage, TeX

C_5\times D_4\rtimes_3Q_8
% in TeX

G:=Group("C5xD4:3Q8");
// GroupNames label

G:=SmallGroup(320,1556);
// by ID

G=gap.SmallGroup(320,1556);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,1688,3446,1242,304]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽