Copied to
clipboard

?

G = D4×C2×C20order 320 = 26·5

Direct product of C2×C20 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C2×C20, C41(C22×C20), (C23×C20)⋊6C2, C234(C2×C20), (C2×C42)⋊7C10, (C23×C4)⋊3C10, C4216(C2×C10), C2010(C22×C4), (C4×C20)⋊57C22, C2.4(C23×C20), C24.30(C2×C10), C10.77(C23×C4), C221(C22×C20), C22.59(D4×C10), (C2×C20).707C23, (C2×C10).335C24, (C22×C20)⋊58C22, (C22×D4).13C10, C10.179(C22×D4), C22.8(C23×C10), (D4×C10).330C22, C23.28(C22×C10), (C23×C10).90C22, (C22×C10).252C23, (C2×C4×C20)⋊20C2, C2.3(D4×C2×C10), (C2×C4)⋊7(C2×C20), (C2×C4⋊C4)⋊25C10, (C10×C4⋊C4)⋊52C2, C4⋊C419(C2×C10), (C2×C20)⋊45(C2×C4), (D4×C2×C10).26C2, C2.2(C10×C4○D4), (C5×C4⋊C4)⋊76C22, (C2×C10)⋊8(C22×C4), (C10×C22⋊C4)⋊36C2, (C2×C22⋊C4)⋊16C10, C22⋊C417(C2×C10), (C22×C4)⋊16(C2×C10), (C22×C10)⋊20(C2×C4), (C2×D4).76(C2×C10), C10.221(C2×C4○D4), (C2×C10).681(C2×D4), C22.27(C5×C4○D4), (C5×C22⋊C4)⋊71C22, (C2×C4).54(C22×C10), (C2×C10).227(C4○D4), SmallGroup(320,1517)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C2×C20
C1C2C22C2×C10C2×C20C5×C22⋊C4D4×C20 — D4×C2×C20
C1C2 — D4×C2×C20
C1C22×C20 — D4×C2×C20

Subgroups: 578 in 426 conjugacy classes, 274 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×8], C4 [×6], C22, C22 [×14], C22 [×24], C5, C2×C4 [×18], C2×C4 [×22], D4 [×16], C23, C23 [×12], C23 [×8], C10 [×3], C10 [×4], C10 [×8], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×3], C22×C4 [×10], C22×C4 [×8], C2×D4 [×12], C24 [×2], C20 [×8], C20 [×6], C2×C10, C2×C10 [×14], C2×C10 [×24], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×8], C23×C4 [×2], C22×D4, C2×C20 [×18], C2×C20 [×22], C5×D4 [×16], C22×C10, C22×C10 [×12], C22×C10 [×8], C2×C4×D4, C4×C20 [×4], C5×C22⋊C4 [×8], C5×C4⋊C4 [×4], C22×C20 [×3], C22×C20 [×10], C22×C20 [×8], D4×C10 [×12], C23×C10 [×2], C2×C4×C20, C10×C22⋊C4 [×2], C10×C4⋊C4, D4×C20 [×8], C23×C20 [×2], D4×C2×C10, D4×C2×C20

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, C2×C4 [×28], D4 [×4], C23 [×15], C10 [×15], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, C20 [×8], C2×C10 [×35], C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, C2×C20 [×28], C5×D4 [×4], C22×C10 [×15], C2×C4×D4, C22×C20 [×14], D4×C10 [×6], C5×C4○D4 [×2], C23×C10, D4×C20 [×4], C23×C20, D4×C2×C10, C10×C4○D4, D4×C2×C20

Generators and relations
 G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 122)(2 123)(3 124)(4 125)(5 126)(6 127)(7 128)(8 129)(9 130)(10 131)(11 132)(12 133)(13 134)(14 135)(15 136)(16 137)(17 138)(18 139)(19 140)(20 121)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(40 52)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(101 144)(102 145)(103 146)(104 147)(105 148)(106 149)(107 150)(108 151)(109 152)(110 153)(111 154)(112 155)(113 156)(114 157)(115 158)(116 159)(117 160)(118 141)(119 142)(120 143)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 110 37 68)(2 111 38 69)(3 112 39 70)(4 113 40 71)(5 114 21 72)(6 115 22 73)(7 116 23 74)(8 117 24 75)(9 118 25 76)(10 119 26 77)(11 120 27 78)(12 101 28 79)(13 102 29 80)(14 103 30 61)(15 104 31 62)(16 105 32 63)(17 106 33 64)(18 107 34 65)(19 108 35 66)(20 109 36 67)(41 86 134 145)(42 87 135 146)(43 88 136 147)(44 89 137 148)(45 90 138 149)(46 91 139 150)(47 92 140 151)(48 93 121 152)(49 94 122 153)(50 95 123 154)(51 96 124 155)(52 97 125 156)(53 98 126 157)(54 99 127 158)(55 100 128 159)(56 81 129 160)(57 82 130 141)(58 83 131 142)(59 84 132 143)(60 85 133 144)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 121)(37 122)(38 123)(39 124)(40 125)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(101 144)(102 145)(103 146)(104 147)(105 148)(106 149)(107 150)(108 151)(109 152)(110 153)(111 154)(112 155)(113 156)(114 157)(115 158)(116 159)(117 160)(118 141)(119 142)(120 143)

G:=sub<Sym(160)| (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,129)(9,130)(10,131)(11,132)(12,133)(13,134)(14,135)(15,136)(16,137)(17,138)(18,139)(19,140)(20,121)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,144)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155)(113,156)(114,157)(115,158)(116,159)(117,160)(118,141)(119,142)(120,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,110,37,68)(2,111,38,69)(3,112,39,70)(4,113,40,71)(5,114,21,72)(6,115,22,73)(7,116,23,74)(8,117,24,75)(9,118,25,76)(10,119,26,77)(11,120,27,78)(12,101,28,79)(13,102,29,80)(14,103,30,61)(15,104,31,62)(16,105,32,63)(17,106,33,64)(18,107,34,65)(19,108,35,66)(20,109,36,67)(41,86,134,145)(42,87,135,146)(43,88,136,147)(44,89,137,148)(45,90,138,149)(46,91,139,150)(47,92,140,151)(48,93,121,152)(49,94,122,153)(50,95,123,154)(51,96,124,155)(52,97,125,156)(53,98,126,157)(54,99,127,158)(55,100,128,159)(56,81,129,160)(57,82,130,141)(58,83,131,142)(59,84,132,143)(60,85,133,144), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,121)(37,122)(38,123)(39,124)(40,125)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,144)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155)(113,156)(114,157)(115,158)(116,159)(117,160)(118,141)(119,142)(120,143)>;

G:=Group( (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,129)(9,130)(10,131)(11,132)(12,133)(13,134)(14,135)(15,136)(16,137)(17,138)(18,139)(19,140)(20,121)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,144)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155)(113,156)(114,157)(115,158)(116,159)(117,160)(118,141)(119,142)(120,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,110,37,68)(2,111,38,69)(3,112,39,70)(4,113,40,71)(5,114,21,72)(6,115,22,73)(7,116,23,74)(8,117,24,75)(9,118,25,76)(10,119,26,77)(11,120,27,78)(12,101,28,79)(13,102,29,80)(14,103,30,61)(15,104,31,62)(16,105,32,63)(17,106,33,64)(18,107,34,65)(19,108,35,66)(20,109,36,67)(41,86,134,145)(42,87,135,146)(43,88,136,147)(44,89,137,148)(45,90,138,149)(46,91,139,150)(47,92,140,151)(48,93,121,152)(49,94,122,153)(50,95,123,154)(51,96,124,155)(52,97,125,156)(53,98,126,157)(54,99,127,158)(55,100,128,159)(56,81,129,160)(57,82,130,141)(58,83,131,142)(59,84,132,143)(60,85,133,144), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,121)(37,122)(38,123)(39,124)(40,125)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,144)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155)(113,156)(114,157)(115,158)(116,159)(117,160)(118,141)(119,142)(120,143) );

G=PermutationGroup([(1,122),(2,123),(3,124),(4,125),(5,126),(6,127),(7,128),(8,129),(9,130),(10,131),(11,132),(12,133),(13,134),(14,135),(15,136),(16,137),(17,138),(18,139),(19,140),(20,121),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(40,52),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(101,144),(102,145),(103,146),(104,147),(105,148),(106,149),(107,150),(108,151),(109,152),(110,153),(111,154),(112,155),(113,156),(114,157),(115,158),(116,159),(117,160),(118,141),(119,142),(120,143)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,110,37,68),(2,111,38,69),(3,112,39,70),(4,113,40,71),(5,114,21,72),(6,115,22,73),(7,116,23,74),(8,117,24,75),(9,118,25,76),(10,119,26,77),(11,120,27,78),(12,101,28,79),(13,102,29,80),(14,103,30,61),(15,104,31,62),(16,105,32,63),(17,106,33,64),(18,107,34,65),(19,108,35,66),(20,109,36,67),(41,86,134,145),(42,87,135,146),(43,88,136,147),(44,89,137,148),(45,90,138,149),(46,91,139,150),(47,92,140,151),(48,93,121,152),(49,94,122,153),(50,95,123,154),(51,96,124,155),(52,97,125,156),(53,98,126,157),(54,99,127,158),(55,100,128,159),(56,81,129,160),(57,82,130,141),(58,83,131,142),(59,84,132,143),(60,85,133,144)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,121),(37,122),(38,123),(39,124),(40,125),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(101,144),(102,145),(103,146),(104,147),(105,148),(106,149),(107,150),(108,151),(109,152),(110,153),(111,154),(112,155),(113,156),(114,157),(115,158),(116,159),(117,160),(118,141),(119,142),(120,143)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
04000
0010
0001
,
20000
0900
0020
0002
,
40000
04000
00402
00401
,
40000
0100
00400
00401
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[20,0,0,0,0,9,0,0,0,0,2,0,0,0,0,2],[40,0,0,0,0,40,0,0,0,0,40,40,0,0,2,1],[40,0,0,0,0,1,0,0,0,0,40,40,0,0,0,1] >;

200 conjugacy classes

class 1 2A···2G2H···2O4A···4H4I···4X5A5B5C5D10A···10AB10AC···10BH20A···20AF20AG···20CR
order12···22···24···44···4555510···1010···1020···2020···20
size11···12···21···12···211111···12···21···12···2

200 irreducible representations

dim11111111111111112222
type++++++++
imageC1C2C2C2C2C2C2C4C5C10C10C10C10C10C10C20D4C4○D4C5×D4C5×C4○D4
kernelD4×C2×C20C2×C4×C20C10×C22⋊C4C10×C4⋊C4D4×C20C23×C20D4×C2×C10D4×C10C2×C4×D4C2×C42C2×C22⋊C4C2×C4⋊C4C4×D4C23×C4C22×D4C2×D4C2×C20C2×C10C2×C4C22
# reps1121821164484328464441616

In GAP, Magma, Sage, TeX

D_4\times C_2\times C_{20}
% in TeX

G:=Group("D4xC2xC20");
// GroupNames label

G:=SmallGroup(320,1517);
// by ID

G=gap.SmallGroup(320,1517);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,856]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽