Copied to
clipboard

?

G = D8×C2×C10order 320 = 26·5

Direct product of C2×C10 and D8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: D8×C2×C10, C4013C23, C20.78C24, C82(C22×C10), (C22×C8)⋊7C10, C4.18(D4×C10), (C2×C40)⋊50C22, (C22×C40)⋊21C2, (C2×C20).432D4, C20.325(C2×D4), (C5×D4)⋊12C23, D41(C22×C10), C4.1(C23×C10), C23.60(C5×D4), (D4×C10)⋊65C22, (C22×D4)⋊10C10, C22.65(D4×C10), (C2×C20).971C23, C10.199(C22×D4), (C22×C10).221D4, (C22×C20).601C22, (D4×C2×C10)⋊25C2, C2.23(D4×C2×C10), (C2×C8)⋊12(C2×C10), (C2×C4).88(C5×D4), (C2×D4)⋊14(C2×C10), (C2×C10).686(C2×D4), (C2×C4).141(C22×C10), (C22×C4).128(C2×C10), SmallGroup(320,1571)

Series: Derived Chief Lower central Upper central

C1C4 — D8×C2×C10
C1C2C4C20C5×D4C5×D8C10×D8 — D8×C2×C10
C1C2C4 — D8×C2×C10
C1C22×C10C22×C20 — D8×C2×C10

Subgroups: 658 in 338 conjugacy classes, 178 normal (14 characteristic)
C1, C2, C2 [×6], C2 [×8], C4, C4 [×3], C22 [×7], C22 [×32], C5, C8 [×4], C2×C4 [×6], D4 [×8], D4 [×12], C23, C23 [×20], C10, C10 [×6], C10 [×8], C2×C8 [×6], D8 [×16], C22×C4, C2×D4 [×12], C2×D4 [×6], C24 [×2], C20, C20 [×3], C2×C10 [×7], C2×C10 [×32], C22×C8, C2×D8 [×12], C22×D4 [×2], C40 [×4], C2×C20 [×6], C5×D4 [×8], C5×D4 [×12], C22×C10, C22×C10 [×20], C22×D8, C2×C40 [×6], C5×D8 [×16], C22×C20, D4×C10 [×12], D4×C10 [×6], C23×C10 [×2], C22×C40, C10×D8 [×12], D4×C2×C10 [×2], D8×C2×C10

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], D8 [×4], C2×D4 [×6], C24, C2×C10 [×35], C2×D8 [×6], C22×D4, C5×D4 [×4], C22×C10 [×15], C22×D8, C5×D8 [×4], D4×C10 [×6], C23×C10, C10×D8 [×6], D4×C2×C10, D8×C2×C10

Generators and relations
 G = < a,b,c,d | a2=b10=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 100)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 131)(12 132)(13 133)(14 134)(15 135)(16 136)(17 137)(18 138)(19 139)(20 140)(21 114)(22 115)(23 116)(24 117)(25 118)(26 119)(27 120)(28 111)(29 112)(30 113)(31 141)(32 142)(33 143)(34 144)(35 145)(36 146)(37 147)(38 148)(39 149)(40 150)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 71)(48 72)(49 73)(50 74)(51 102)(52 103)(53 104)(54 105)(55 106)(56 107)(57 108)(58 109)(59 110)(60 101)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 81)(121 155)(122 156)(123 157)(124 158)(125 159)(126 160)(127 151)(128 152)(129 153)(130 154)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 22 65 36 55 160 41 20)(2 23 66 37 56 151 42 11)(3 24 67 38 57 152 43 12)(4 25 68 39 58 153 44 13)(5 26 69 40 59 154 45 14)(6 27 70 31 60 155 46 15)(7 28 61 32 51 156 47 16)(8 29 62 33 52 157 48 17)(9 30 63 34 53 158 49 18)(10 21 64 35 54 159 50 19)(71 136 96 111 82 142 102 122)(72 137 97 112 83 143 103 123)(73 138 98 113 84 144 104 124)(74 139 99 114 85 145 105 125)(75 140 100 115 86 146 106 126)(76 131 91 116 87 147 107 127)(77 132 92 117 88 148 108 128)(78 133 93 118 89 149 109 129)(79 134 94 119 90 150 110 130)(80 135 95 120 81 141 101 121)
(1 20)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(21 50)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 60)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)(61 156)(62 157)(63 158)(64 159)(65 160)(66 151)(67 152)(68 153)(69 154)(70 155)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)

G:=sub<Sym(160)| (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,111)(29,112)(30,113)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,71)(48,72)(49,73)(50,74)(51,102)(52,103)(53,104)(54,105)(55,106)(56,107)(57,108)(58,109)(59,110)(60,101)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,81)(121,155)(122,156)(123,157)(124,158)(125,159)(126,160)(127,151)(128,152)(129,153)(130,154), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,22,65,36,55,160,41,20)(2,23,66,37,56,151,42,11)(3,24,67,38,57,152,43,12)(4,25,68,39,58,153,44,13)(5,26,69,40,59,154,45,14)(6,27,70,31,60,155,46,15)(7,28,61,32,51,156,47,16)(8,29,62,33,52,157,48,17)(9,30,63,34,53,158,49,18)(10,21,64,35,54,159,50,19)(71,136,96,111,82,142,102,122)(72,137,97,112,83,143,103,123)(73,138,98,113,84,144,104,124)(74,139,99,114,85,145,105,125)(75,140,100,115,86,146,106,126)(76,131,91,116,87,147,107,127)(77,132,92,117,88,148,108,128)(78,133,93,118,89,149,109,129)(79,134,94,119,90,150,110,130)(80,135,95,120,81,141,101,121), (1,20)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(21,50)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,60)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(61,156)(62,157)(63,158)(64,159)(65,160)(66,151)(67,152)(68,153)(69,154)(70,155)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)>;

G:=Group( (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,111)(29,112)(30,113)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,71)(48,72)(49,73)(50,74)(51,102)(52,103)(53,104)(54,105)(55,106)(56,107)(57,108)(58,109)(59,110)(60,101)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,81)(121,155)(122,156)(123,157)(124,158)(125,159)(126,160)(127,151)(128,152)(129,153)(130,154), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,22,65,36,55,160,41,20)(2,23,66,37,56,151,42,11)(3,24,67,38,57,152,43,12)(4,25,68,39,58,153,44,13)(5,26,69,40,59,154,45,14)(6,27,70,31,60,155,46,15)(7,28,61,32,51,156,47,16)(8,29,62,33,52,157,48,17)(9,30,63,34,53,158,49,18)(10,21,64,35,54,159,50,19)(71,136,96,111,82,142,102,122)(72,137,97,112,83,143,103,123)(73,138,98,113,84,144,104,124)(74,139,99,114,85,145,105,125)(75,140,100,115,86,146,106,126)(76,131,91,116,87,147,107,127)(77,132,92,117,88,148,108,128)(78,133,93,118,89,149,109,129)(79,134,94,119,90,150,110,130)(80,135,95,120,81,141,101,121), (1,20)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(21,50)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,60)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(61,156)(62,157)(63,158)(64,159)(65,160)(66,151)(67,152)(68,153)(69,154)(70,155)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150) );

G=PermutationGroup([(1,100),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,131),(12,132),(13,133),(14,134),(15,135),(16,136),(17,137),(18,138),(19,139),(20,140),(21,114),(22,115),(23,116),(24,117),(25,118),(26,119),(27,120),(28,111),(29,112),(30,113),(31,141),(32,142),(33,143),(34,144),(35,145),(36,146),(37,147),(38,148),(39,149),(40,150),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,71),(48,72),(49,73),(50,74),(51,102),(52,103),(53,104),(54,105),(55,106),(56,107),(57,108),(58,109),(59,110),(60,101),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,81),(121,155),(122,156),(123,157),(124,158),(125,159),(126,160),(127,151),(128,152),(129,153),(130,154)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,22,65,36,55,160,41,20),(2,23,66,37,56,151,42,11),(3,24,67,38,57,152,43,12),(4,25,68,39,58,153,44,13),(5,26,69,40,59,154,45,14),(6,27,70,31,60,155,46,15),(7,28,61,32,51,156,47,16),(8,29,62,33,52,157,48,17),(9,30,63,34,53,158,49,18),(10,21,64,35,54,159,50,19),(71,136,96,111,82,142,102,122),(72,137,97,112,83,143,103,123),(73,138,98,113,84,144,104,124),(74,139,99,114,85,145,105,125),(75,140,100,115,86,146,106,126),(76,131,91,116,87,147,107,127),(77,132,92,117,88,148,108,128),(78,133,93,118,89,149,109,129),(79,134,94,119,90,150,110,130),(80,135,95,120,81,141,101,121)], [(1,20),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(21,50),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,60),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59),(61,156),(62,157),(63,158),(64,159),(65,160),(66,151),(67,152),(68,153),(69,154),(70,155),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
2300000
0230000
0025000
0002500
000040
000004
,
4020000
4010000
000100
0040000
00001229
00001212
,
4020000
010000
000100
001000
00001229
00002929

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,0,0,0,0,0,0,23,0,0,0,0,0,0,25,0,0,0,0,0,0,25,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,29,12],[40,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,29,0,0,0,0,29,29] >;

140 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D5A5B5C5D8A···8H10A···10AB10AC···10BH20A···20P40A···40AF
order12···22···2444455558···810···1010···1020···2040···40
size11···14···4222211112···21···14···42···22···2

140 irreducible representations

dim11111111222222
type+++++++
imageC1C2C2C2C5C10C10C10D4D4D8C5×D4C5×D4C5×D8
kernelD8×C2×C10C22×C40C10×D8D4×C2×C10C22×D8C22×C8C2×D8C22×D4C2×C20C22×C10C2×C10C2×C4C23C22
# reps111224448831812432

In GAP, Magma, Sage, TeX

D_8\times C_2\times C_{10}
% in TeX

G:=Group("D8xC2xC10");
// GroupNames label

G:=SmallGroup(320,1571);
// by ID

G=gap.SmallGroup(320,1571);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽