Copied to
clipboard

?

G = SD16×C2×C10order 320 = 26·5

Direct product of C2×C10 and SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: SD16×C2×C10, C4014C23, C20.79C24, C83(C22×C10), C4.19(D4×C10), (C22×C40)⋊24C2, (C22×C8)⋊10C10, (C2×C40)⋊52C22, C20.326(C2×D4), (C2×C20).433D4, C4.2(C23×C10), (C22×Q8)⋊8C10, Q81(C22×C10), (C5×Q8)⋊11C23, C23.61(C5×D4), (Q8×C10)⋊53C22, D4.1(C22×C10), (C5×D4).34C23, C22.66(D4×C10), (C2×C20).972C23, (C22×D4).12C10, C10.200(C22×D4), (C22×C10).222D4, (D4×C10).327C22, (C22×C20).602C22, (Q8×C2×C10)⋊20C2, C2.24(D4×C2×C10), (C2×C8)⋊14(C2×C10), (D4×C2×C10).25C2, (C2×C4).89(C5×D4), (C2×Q8)⋊13(C2×C10), (C2×D4).73(C2×C10), (C2×C10).687(C2×D4), (C22×C4).129(C2×C10), (C2×C4).142(C22×C10), SmallGroup(320,1572)

Series: Derived Chief Lower central Upper central

C1C4 — SD16×C2×C10
C1C2C4C20C5×Q8C5×SD16C10×SD16 — SD16×C2×C10
C1C2C4 — SD16×C2×C10
C1C22×C10C22×C20 — SD16×C2×C10

Subgroups: 498 in 298 conjugacy classes, 178 normal (18 characteristic)
C1, C2, C2 [×6], C2 [×4], C4, C4 [×3], C4 [×4], C22 [×7], C22 [×16], C5, C8 [×4], C2×C4 [×6], C2×C4 [×6], D4 [×4], D4 [×6], Q8 [×4], Q8 [×6], C23, C23 [×10], C10, C10 [×6], C10 [×4], C2×C8 [×6], SD16 [×16], C22×C4, C22×C4, C2×D4 [×6], C2×D4 [×3], C2×Q8 [×6], C2×Q8 [×3], C24, C20, C20 [×3], C20 [×4], C2×C10 [×7], C2×C10 [×16], C22×C8, C2×SD16 [×12], C22×D4, C22×Q8, C40 [×4], C2×C20 [×6], C2×C20 [×6], C5×D4 [×4], C5×D4 [×6], C5×Q8 [×4], C5×Q8 [×6], C22×C10, C22×C10 [×10], C22×SD16, C2×C40 [×6], C5×SD16 [×16], C22×C20, C22×C20, D4×C10 [×6], D4×C10 [×3], Q8×C10 [×6], Q8×C10 [×3], C23×C10, C22×C40, C10×SD16 [×12], D4×C2×C10, Q8×C2×C10, SD16×C2×C10

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], SD16 [×4], C2×D4 [×6], C24, C2×C10 [×35], C2×SD16 [×6], C22×D4, C5×D4 [×4], C22×C10 [×15], C22×SD16, C5×SD16 [×4], D4×C10 [×6], C23×C10, C10×SD16 [×6], D4×C2×C10, SD16×C2×C10

Generators and relations
 G = < a,b,c,d | a2=b10=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 100)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 123)(12 124)(13 125)(14 126)(15 127)(16 128)(17 129)(18 130)(19 121)(20 122)(21 145)(22 146)(23 147)(24 148)(25 149)(26 150)(27 141)(28 142)(29 143)(30 144)(31 118)(32 119)(33 120)(34 111)(35 112)(36 113)(37 114)(38 115)(39 116)(40 117)(41 106)(42 107)(43 108)(44 109)(45 110)(46 101)(47 102)(48 103)(49 104)(50 105)(51 79)(52 80)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 86)(62 87)(63 88)(64 89)(65 90)(66 81)(67 82)(68 83)(69 84)(70 85)(131 159)(132 160)(133 151)(134 152)(135 153)(136 154)(137 155)(138 156)(139 157)(140 158)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 19 41 31 55 27 61 153)(2 20 42 32 56 28 62 154)(3 11 43 33 57 29 63 155)(4 12 44 34 58 30 64 156)(5 13 45 35 59 21 65 157)(6 14 46 36 60 22 66 158)(7 15 47 37 51 23 67 159)(8 16 48 38 52 24 68 160)(9 17 49 39 53 25 69 151)(10 18 50 40 54 26 70 152)(71 149 84 133 98 129 104 116)(72 150 85 134 99 130 105 117)(73 141 86 135 100 121 106 118)(74 142 87 136 91 122 107 119)(75 143 88 137 92 123 108 120)(76 144 89 138 93 124 109 111)(77 145 90 139 94 125 110 112)(78 146 81 140 95 126 101 113)(79 147 82 131 96 127 102 114)(80 148 83 132 97 128 103 115)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 38)(12 39)(13 40)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 160)(30 151)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 56)(52 57)(53 58)(54 59)(55 60)(71 76)(72 77)(73 78)(74 79)(75 80)(81 106)(82 107)(83 108)(84 109)(85 110)(86 101)(87 102)(88 103)(89 104)(90 105)(91 96)(92 97)(93 98)(94 99)(95 100)(111 129)(112 130)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 127)(120 128)(131 142)(132 143)(133 144)(134 145)(135 146)(136 147)(137 148)(138 149)(139 150)(140 141)

G:=sub<Sym(160)| (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,121)(20,122)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,141)(28,142)(29,143)(30,144)(31,118)(32,119)(33,120)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,106)(42,107)(43,108)(44,109)(45,110)(46,101)(47,102)(48,103)(49,104)(50,105)(51,79)(52,80)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,86)(62,87)(63,88)(64,89)(65,90)(66,81)(67,82)(68,83)(69,84)(70,85)(131,159)(132,160)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,19,41,31,55,27,61,153)(2,20,42,32,56,28,62,154)(3,11,43,33,57,29,63,155)(4,12,44,34,58,30,64,156)(5,13,45,35,59,21,65,157)(6,14,46,36,60,22,66,158)(7,15,47,37,51,23,67,159)(8,16,48,38,52,24,68,160)(9,17,49,39,53,25,69,151)(10,18,50,40,54,26,70,152)(71,149,84,133,98,129,104,116)(72,150,85,134,99,130,105,117)(73,141,86,135,100,121,106,118)(74,142,87,136,91,122,107,119)(75,143,88,137,92,123,108,120)(76,144,89,138,93,124,109,111)(77,145,90,139,94,125,110,112)(78,146,81,140,95,126,101,113)(79,147,82,131,96,127,102,114)(80,148,83,132,97,128,103,115), (1,6)(2,7)(3,8)(4,9)(5,10)(11,38)(12,39)(13,40)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,56)(52,57)(53,58)(54,59)(55,60)(71,76)(72,77)(73,78)(74,79)(75,80)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,96)(92,97)(93,98)(94,99)(95,100)(111,129)(112,130)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)>;

G:=Group( (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,121)(20,122)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,141)(28,142)(29,143)(30,144)(31,118)(32,119)(33,120)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,106)(42,107)(43,108)(44,109)(45,110)(46,101)(47,102)(48,103)(49,104)(50,105)(51,79)(52,80)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,86)(62,87)(63,88)(64,89)(65,90)(66,81)(67,82)(68,83)(69,84)(70,85)(131,159)(132,160)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,19,41,31,55,27,61,153)(2,20,42,32,56,28,62,154)(3,11,43,33,57,29,63,155)(4,12,44,34,58,30,64,156)(5,13,45,35,59,21,65,157)(6,14,46,36,60,22,66,158)(7,15,47,37,51,23,67,159)(8,16,48,38,52,24,68,160)(9,17,49,39,53,25,69,151)(10,18,50,40,54,26,70,152)(71,149,84,133,98,129,104,116)(72,150,85,134,99,130,105,117)(73,141,86,135,100,121,106,118)(74,142,87,136,91,122,107,119)(75,143,88,137,92,123,108,120)(76,144,89,138,93,124,109,111)(77,145,90,139,94,125,110,112)(78,146,81,140,95,126,101,113)(79,147,82,131,96,127,102,114)(80,148,83,132,97,128,103,115), (1,6)(2,7)(3,8)(4,9)(5,10)(11,38)(12,39)(13,40)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,56)(52,57)(53,58)(54,59)(55,60)(71,76)(72,77)(73,78)(74,79)(75,80)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,96)(92,97)(93,98)(94,99)(95,100)(111,129)(112,130)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141) );

G=PermutationGroup([(1,100),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,123),(12,124),(13,125),(14,126),(15,127),(16,128),(17,129),(18,130),(19,121),(20,122),(21,145),(22,146),(23,147),(24,148),(25,149),(26,150),(27,141),(28,142),(29,143),(30,144),(31,118),(32,119),(33,120),(34,111),(35,112),(36,113),(37,114),(38,115),(39,116),(40,117),(41,106),(42,107),(43,108),(44,109),(45,110),(46,101),(47,102),(48,103),(49,104),(50,105),(51,79),(52,80),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,86),(62,87),(63,88),(64,89),(65,90),(66,81),(67,82),(68,83),(69,84),(70,85),(131,159),(132,160),(133,151),(134,152),(135,153),(136,154),(137,155),(138,156),(139,157),(140,158)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,19,41,31,55,27,61,153),(2,20,42,32,56,28,62,154),(3,11,43,33,57,29,63,155),(4,12,44,34,58,30,64,156),(5,13,45,35,59,21,65,157),(6,14,46,36,60,22,66,158),(7,15,47,37,51,23,67,159),(8,16,48,38,52,24,68,160),(9,17,49,39,53,25,69,151),(10,18,50,40,54,26,70,152),(71,149,84,133,98,129,104,116),(72,150,85,134,99,130,105,117),(73,141,86,135,100,121,106,118),(74,142,87,136,91,122,107,119),(75,143,88,137,92,123,108,120),(76,144,89,138,93,124,109,111),(77,145,90,139,94,125,110,112),(78,146,81,140,95,126,101,113),(79,147,82,131,96,127,102,114),(80,148,83,132,97,128,103,115)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,38),(12,39),(13,40),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,160),(30,151),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,56),(52,57),(53,58),(54,59),(55,60),(71,76),(72,77),(73,78),(74,79),(75,80),(81,106),(82,107),(83,108),(84,109),(85,110),(86,101),(87,102),(88,103),(89,104),(90,105),(91,96),(92,97),(93,98),(94,99),(95,100),(111,129),(112,130),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,127),(120,128),(131,142),(132,143),(133,144),(134,145),(135,146),(136,147),(137,148),(138,149),(139,150),(140,141)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
04000
00400
00040
,
40000
0100
00100
00010
,
1000
0100
001526
001515
,
1000
04000
0010
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,1,0,0,0,0,10,0,0,0,0,10],[1,0,0,0,0,1,0,0,0,0,15,15,0,0,26,15],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40] >;

140 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H5A5B5C5D8A···8H10A···10AB10AC···10AR20A···20P20Q···20AF40A···40AF
order12···222224444444455558···810···1010···1020···2020···2040···40
size11···144442222444411112···21···14···42···24···42···2

140 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C5C10C10C10C10D4D4SD16C5×D4C5×D4C5×SD16
kernelSD16×C2×C10C22×C40C10×SD16D4×C2×C10Q8×C2×C10C22×SD16C22×C8C2×SD16C22×D4C22×Q8C2×C20C22×C10C2×C10C2×C4C23C22
# reps11121144484431812432

In GAP, Magma, Sage, TeX

SD_{16}\times C_2\times C_{10}
% in TeX

G:=Group("SD16xC2xC10");
// GroupNames label

G:=SmallGroup(320,1572);
// by ID

G=gap.SmallGroup(320,1572);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽