# Extensions 1→N→G→Q→1 with N=C2×D4 and Q=F5

Direct product G=N×Q with N=C2×D4 and Q=F5
dρLabelID
C2×D4×F540C2xD4xF5320,1595

Semidirect products G=N:Q with N=C2×D4 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1F5 = D10.SD16φ: F5/C5C4 ⊆ Out C2×D480(C2xD4):1F5320,258
(C2×D4)⋊2F5 = (C2×D4)⋊F5φ: F5/C5C4 ⊆ Out C2×D4408+(C2xD4):2F5320,260
(C2×D4)⋊3F5 = C2×D20⋊C4φ: F5/D5C2 ⊆ Out C2×D480(C2xD4):3F5320,1104
(C2×D4)⋊4F5 = (D4×C10)⋊C4φ: F5/D5C2 ⊆ Out C2×D4408+(C2xD4):4F5320,1105
(C2×D4)⋊5F5 = C2×D4⋊F5φ: F5/D5C2 ⊆ Out C2×D480(C2xD4):5F5320,1106
(C2×D4)⋊6F5 = (C2×D4)⋊6F5φ: F5/D5C2 ⊆ Out C2×D4808-(C2xD4):6F5320,1107
(C2×D4)⋊7F5 = (C2×D4)⋊7F5φ: F5/D5C2 ⊆ Out C2×D4408+(C2xD4):7F5320,1108
(C2×D4)⋊8F5 = (C2×D4)⋊8F5φ: F5/D5C2 ⊆ Out C2×D4808-(C2xD4):8F5320,1109
(C2×D4)⋊9F5 = (C2×F5)⋊D4φ: F5/D5C2 ⊆ Out C2×D440(C2xD4):9F5320,1117
(C2×D4)⋊10F5 = C2.(D4×F5)φ: F5/D5C2 ⊆ Out C2×D480(C2xD4):10F5320,1118
(C2×D4)⋊11F5 = D10.C24φ: F5/D5C2 ⊆ Out C2×D4408+(C2xD4):11F5320,1596

Non-split extensions G=N.Q with N=C2×D4 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2×D4).1F5 = (C2×D4).F5φ: F5/C5C4 ⊆ Out C2×D4160(C2xD4).1F5320,259
(C2×D4).2F5 = (D4×C10).C4φ: F5/C5C4 ⊆ Out C2×D4808-(C2xD4).2F5320,261
(C2×D4).3F5 = Dic5.SD16φ: F5/C5C4 ⊆ Out C2×D4160(C2xD4).3F5320,263
(C2×D4).4F5 = Dic5.23D8φ: F5/D5C2 ⊆ Out C2×D4160(C2xD4).4F5320,262
(C2×D4).5F5 = C5⋊C87D4φ: F5/D5C2 ⊆ Out C2×D4160(C2xD4).5F5320,1111
(C2×D4).6F5 = C202M4(2)φ: F5/D5C2 ⊆ Out C2×D4160(C2xD4).6F5320,1112
(C2×D4).7F5 = (C2×D4).7F5φ: F5/D5C2 ⊆ Out C2×D4160(C2xD4).7F5320,1113
(C2×D4).8F5 = (C2×D4).8F5φ: F5/D5C2 ⊆ Out C2×D4160(C2xD4).8F5320,1114
(C2×D4).9F5 = (C2×D4).9F5φ: F5/D5C2 ⊆ Out C2×D4808-(C2xD4).9F5320,1115
(C2×D4).10F5 = D5⋊(C4.D4)φ: F5/D5C2 ⊆ Out C2×D4408+(C2xD4).10F5320,1116
(C2×D4).11F5 = Dic5.C24φ: F5/D5C2 ⊆ Out C2×D4808-(C2xD4).11F5320,1594
(C2×D4).12F5 = D4×C5⋊C8φ: trivial image160(C2xD4).12F5320,1110
(C2×D4).13F5 = C2×D4.F5φ: trivial image160(C2xD4).13F5320,1593

׿
×
𝔽