Extensions 1→N→G→Q→1 with N=C2xQ8xD5 and Q=C2

Direct product G=NxQ with N=C2xQ8xD5 and Q=C2
dρLabelID
C22xQ8xD5160C2^2xQ8xD5320,1615

Semidirect products G=N:Q with N=C2xQ8xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8xD5):1C2 = Q8:2D20φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):1C2320,433
(C2xQ8xD5):2C2 = D10:8SD16φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):2C2320,797
(C2xQ8xD5):3C2 = Q8xD20φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):3C2320,1247
(C2xQ8xD5):4C2 = Q8:5D20φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):4C2320,1248
(C2xQ8xD5):5C2 = D5xC22:Q8φ: C2/C1C2 ⊆ Out C2xQ8xD580(C2xQ8xD5):5C2320,1298
(C2xQ8xD5):6C2 = C10.162- 1+4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):6C2320,1300
(C2xQ8xD5):7C2 = Dic10:21D4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):7C2320,1304
(C2xQ8xD5):8C2 = Dic10:22D4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):8C2320,1305
(C2xQ8xD5):9C2 = D5xC4.4D4φ: C2/C1C2 ⊆ Out C2xQ8xD580(C2xQ8xD5):9C2320,1345
(C2xQ8xD5):10C2 = C42.141D10φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):10C2320,1347
(C2xQ8xD5):11C2 = Dic10:10D4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):11C2320,1349
(C2xQ8xD5):12C2 = C42.171D10φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):12C2320,1396
(C2xQ8xD5):13C2 = D20:8Q8φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):13C2320,1399
(C2xQ8xD5):14C2 = C2xD5xSD16φ: C2/C1C2 ⊆ Out C2xQ8xD580(C2xQ8xD5):14C2320,1430
(C2xQ8xD5):15C2 = C2xSD16:D5φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):15C2320,1432
(C2xQ8xD5):16C2 = C2xQ16:D5φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):16C2320,1436
(C2xQ8xD5):17C2 = D5xC8.C22φ: C2/C1C2 ⊆ Out C2xQ8xD5808-(C2xQ8xD5):17C2320,1448
(C2xQ8xD5):18C2 = Q8xC5:D4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):18C2320,1487
(C2xQ8xD5):19C2 = C10.1072- 1+4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):19C2320,1503
(C2xQ8xD5):20C2 = C2xQ8.10D10φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):20C2320,1617
(C2xQ8xD5):21C2 = C2xD4.10D10φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5):21C2320,1620
(C2xQ8xD5):22C2 = D5x2- 1+4φ: C2/C1C2 ⊆ Out C2xQ8xD5808-(C2xQ8xD5):22C2320,1624
(C2xQ8xD5):23C2 = C2xD5xC4oD4φ: trivial image80(C2xQ8xD5):23C2320,1618

Non-split extensions G=N.Q with N=C2xQ8xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8xD5).1C2 = D5xC4.10D4φ: C2/C1C2 ⊆ Out C2xQ8xD5808-(C2xQ8xD5).1C2320,377
(C2xQ8xD5).2C2 = D5xQ8:C4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).2C2320,428
(C2xQ8xD5).3C2 = (Q8xD5):C4φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).3C2320,429
(C2xQ8xD5).4C2 = D10:4Q16φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).4C2320,435
(C2xQ8xD5).5C2 = D10:5Q16φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).5C2320,813
(C2xQ8xD5).6C2 = C42.125D10φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).6C2320,1244
(C2xQ8xD5).7C2 = D5xC4:Q8φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).7C2320,1395
(C2xQ8xD5).8C2 = C2xD5xQ16φ: C2/C1C2 ⊆ Out C2xQ8xD5160(C2xQ8xD5).8C2320,1435
(C2xQ8xD5).9C2 = C2xQ8:F5φ: C2/C1C2 ⊆ Out C2xQ8xD580(C2xQ8xD5).9C2320,1119
(C2xQ8xD5).10C2 = (C2xQ8):4F5φ: C2/C1C2 ⊆ Out C2xQ8xD5808-(C2xQ8xD5).10C2320,1120
(C2xQ8xD5).11C2 = (C2xQ8).7F5φ: C2/C1C2 ⊆ Out C2xQ8xD5808-(C2xQ8xD5).11C2320,1127
(C2xQ8xD5).12C2 = (C2xF5):Q8φ: C2/C1C2 ⊆ Out C2xQ8xD580(C2xQ8xD5).12C2320,1128
(C2xQ8xD5).13C2 = C2xQ8xF5φ: C2/C1C2 ⊆ Out C2xQ8xD580(C2xQ8xD5).13C2320,1599
(C2xQ8xD5).14C2 = D5.2- 1+4φ: C2/C1C2 ⊆ Out C2xQ8xD5808-(C2xQ8xD5).14C2320,1600
(C2xQ8xD5).15C2 = C4xQ8xD5φ: trivial image160(C2xQ8xD5).15C2320,1243

׿
x
:
Z
F
o
wr
Q
<