Extensions 1→N→G→Q→1 with N=C2×Q8×D5 and Q=C2

Direct product G=N×Q with N=C2×Q8×D5 and Q=C2
dρLabelID
C22×Q8×D5160C2^2xQ8xD5320,1615

Semidirect products G=N:Q with N=C2×Q8×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8×D5)⋊1C2 = Q82D20φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):1C2320,433
(C2×Q8×D5)⋊2C2 = D108SD16φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):2C2320,797
(C2×Q8×D5)⋊3C2 = Q8×D20φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):3C2320,1247
(C2×Q8×D5)⋊4C2 = Q85D20φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):4C2320,1248
(C2×Q8×D5)⋊5C2 = D5×C22⋊Q8φ: C2/C1C2 ⊆ Out C2×Q8×D580(C2xQ8xD5):5C2320,1298
(C2×Q8×D5)⋊6C2 = C10.162- 1+4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):6C2320,1300
(C2×Q8×D5)⋊7C2 = Dic1021D4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):7C2320,1304
(C2×Q8×D5)⋊8C2 = Dic1022D4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):8C2320,1305
(C2×Q8×D5)⋊9C2 = D5×C4.4D4φ: C2/C1C2 ⊆ Out C2×Q8×D580(C2xQ8xD5):9C2320,1345
(C2×Q8×D5)⋊10C2 = C42.141D10φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):10C2320,1347
(C2×Q8×D5)⋊11C2 = Dic1010D4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):11C2320,1349
(C2×Q8×D5)⋊12C2 = C42.171D10φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):12C2320,1396
(C2×Q8×D5)⋊13C2 = D208Q8φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):13C2320,1399
(C2×Q8×D5)⋊14C2 = C2×D5×SD16φ: C2/C1C2 ⊆ Out C2×Q8×D580(C2xQ8xD5):14C2320,1430
(C2×Q8×D5)⋊15C2 = C2×SD16⋊D5φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):15C2320,1432
(C2×Q8×D5)⋊16C2 = C2×Q16⋊D5φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):16C2320,1436
(C2×Q8×D5)⋊17C2 = D5×C8.C22φ: C2/C1C2 ⊆ Out C2×Q8×D5808-(C2xQ8xD5):17C2320,1448
(C2×Q8×D5)⋊18C2 = Q8×C5⋊D4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):18C2320,1487
(C2×Q8×D5)⋊19C2 = C10.1072- 1+4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):19C2320,1503
(C2×Q8×D5)⋊20C2 = C2×Q8.10D10φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):20C2320,1617
(C2×Q8×D5)⋊21C2 = C2×D4.10D10φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5):21C2320,1620
(C2×Q8×D5)⋊22C2 = D5×2- 1+4φ: C2/C1C2 ⊆ Out C2×Q8×D5808-(C2xQ8xD5):22C2320,1624
(C2×Q8×D5)⋊23C2 = C2×D5×C4○D4φ: trivial image80(C2xQ8xD5):23C2320,1618

Non-split extensions G=N.Q with N=C2×Q8×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8×D5).1C2 = D5×C4.10D4φ: C2/C1C2 ⊆ Out C2×Q8×D5808-(C2xQ8xD5).1C2320,377
(C2×Q8×D5).2C2 = D5×Q8⋊C4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).2C2320,428
(C2×Q8×D5).3C2 = (Q8×D5)⋊C4φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).3C2320,429
(C2×Q8×D5).4C2 = D104Q16φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).4C2320,435
(C2×Q8×D5).5C2 = D105Q16φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).5C2320,813
(C2×Q8×D5).6C2 = C42.125D10φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).6C2320,1244
(C2×Q8×D5).7C2 = D5×C4⋊Q8φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).7C2320,1395
(C2×Q8×D5).8C2 = C2×D5×Q16φ: C2/C1C2 ⊆ Out C2×Q8×D5160(C2xQ8xD5).8C2320,1435
(C2×Q8×D5).9C2 = C2×Q8⋊F5φ: C2/C1C2 ⊆ Out C2×Q8×D580(C2xQ8xD5).9C2320,1119
(C2×Q8×D5).10C2 = (C2×Q8)⋊4F5φ: C2/C1C2 ⊆ Out C2×Q8×D5808-(C2xQ8xD5).10C2320,1120
(C2×Q8×D5).11C2 = (C2×Q8).7F5φ: C2/C1C2 ⊆ Out C2×Q8×D5808-(C2xQ8xD5).11C2320,1127
(C2×Q8×D5).12C2 = (C2×F5)⋊Q8φ: C2/C1C2 ⊆ Out C2×Q8×D580(C2xQ8xD5).12C2320,1128
(C2×Q8×D5).13C2 = C2×Q8×F5φ: C2/C1C2 ⊆ Out C2×Q8×D580(C2xQ8xD5).13C2320,1599
(C2×Q8×D5).14C2 = D5.2- 1+4φ: C2/C1C2 ⊆ Out C2×Q8×D5808-(C2xQ8xD5).14C2320,1600
(C2×Q8×D5).15C2 = C4×Q8×D5φ: trivial image160(C2xQ8xD5).15C2320,1243

׿
×
𝔽