Copied to
clipboard

G = Q82D20order 320 = 26·5

1st semidirect product of Q8 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q82D20, D107SD16, Dic104D4, (C5×Q8)⋊1D4, C4.5(C2×D20), C4.92(D4×D5), C4⋊C4.23D10, C52(Q8⋊D4), Q8⋊C411D5, C20.120(C2×D4), C4⋊D20.2C2, (C2×C8).123D10, D101C813C2, C2.17(D5×SD16), C10.23C22≀C2, C10.Q1611C2, (C2×Q8).107D10, (C2×Dic5).38D4, C10.31(C2×SD16), C22.196(D4×D5), (C2×C40).134C22, (C2×C20).246C23, (C22×D5).114D4, (C2×D20).66C22, (Q8×C10).29C22, C2.26(C22⋊D20), C2.14(Q16⋊D5), C10.60(C8.C22), (C2×Dic10).74C22, (C2×Q8×D5)⋊1C2, (C2×Q8⋊D5)⋊2C2, (C2×C40⋊C2)⋊17C2, (C2×C4×D5).24C22, (C5×Q8⋊C4)⋊11C2, (C2×C10).259(C2×D4), (C5×C4⋊C4).47C22, (C2×C52C8).38C22, (C2×C4).353(C22×D5), SmallGroup(320,433)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Q82D20
C1C5C10C2×C10C2×C20C2×C4×D5C2×Q8×D5 — Q82D20
C5C10C2×C20 — Q82D20
C1C22C2×C4Q8⋊C4

Generators and relations for Q82D20
 G = < a,b,c,d | a4=c20=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=dbd=ab, dcd=c-1 >

Subgroups: 750 in 158 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊C8, Q8⋊C4, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, C52C8, C40, Dic10, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22×D5, Q8⋊D4, C40⋊C2, C2×C52C8, D10⋊C4, Q8⋊D5, C5×C4⋊C4, C2×C40, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q8×D5, Q8×C10, C10.Q16, D101C8, C5×Q8⋊C4, C4⋊D20, C2×C40⋊C2, C2×Q8⋊D5, C2×Q8×D5, Q82D20
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C22≀C2, C2×SD16, C8.C22, D20, C22×D5, Q8⋊D4, C2×D20, D4×D5, C22⋊D20, D5×SD16, Q16⋊D5, Q82D20

Smallest permutation representation of Q82D20
On 160 points
Generators in S160
(1 38 96 138)(2 139 97 39)(3 40 98 140)(4 121 99 21)(5 22 100 122)(6 123 81 23)(7 24 82 124)(8 125 83 25)(9 26 84 126)(10 127 85 27)(11 28 86 128)(12 129 87 29)(13 30 88 130)(14 131 89 31)(15 32 90 132)(16 133 91 33)(17 34 92 134)(18 135 93 35)(19 36 94 136)(20 137 95 37)(41 61 115 154)(42 155 116 62)(43 63 117 156)(44 157 118 64)(45 65 119 158)(46 159 120 66)(47 67 101 160)(48 141 102 68)(49 69 103 142)(50 143 104 70)(51 71 105 144)(52 145 106 72)(53 73 107 146)(54 147 108 74)(55 75 109 148)(56 149 110 76)(57 77 111 150)(58 151 112 78)(59 79 113 152)(60 153 114 80)
(1 109 96 55)(2 76 97 149)(3 111 98 57)(4 78 99 151)(5 113 100 59)(6 80 81 153)(7 115 82 41)(8 62 83 155)(9 117 84 43)(10 64 85 157)(11 119 86 45)(12 66 87 159)(13 101 88 47)(14 68 89 141)(15 103 90 49)(16 70 91 143)(17 105 92 51)(18 72 93 145)(19 107 94 53)(20 74 95 147)(21 58 121 112)(22 79 122 152)(23 60 123 114)(24 61 124 154)(25 42 125 116)(26 63 126 156)(27 44 127 118)(28 65 128 158)(29 46 129 120)(30 67 130 160)(31 48 131 102)(32 69 132 142)(33 50 133 104)(34 71 134 144)(35 52 135 106)(36 73 136 146)(37 54 137 108)(38 75 138 148)(39 56 139 110)(40 77 140 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 129)(22 128)(23 127)(24 126)(25 125)(26 124)(27 123)(28 122)(29 121)(30 140)(31 139)(32 138)(33 137)(34 136)(35 135)(36 134)(37 133)(38 132)(39 131)(40 130)(41 156)(42 155)(43 154)(44 153)(45 152)(46 151)(47 150)(48 149)(49 148)(50 147)(51 146)(52 145)(53 144)(54 143)(55 142)(56 141)(57 160)(58 159)(59 158)(60 157)(61 117)(62 116)(63 115)(64 114)(65 113)(66 112)(67 111)(68 110)(69 109)(70 108)(71 107)(72 106)(73 105)(74 104)(75 103)(76 102)(77 101)(78 120)(79 119)(80 118)(81 85)(82 84)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)

G:=sub<Sym(160)| (1,38,96,138)(2,139,97,39)(3,40,98,140)(4,121,99,21)(5,22,100,122)(6,123,81,23)(7,24,82,124)(8,125,83,25)(9,26,84,126)(10,127,85,27)(11,28,86,128)(12,129,87,29)(13,30,88,130)(14,131,89,31)(15,32,90,132)(16,133,91,33)(17,34,92,134)(18,135,93,35)(19,36,94,136)(20,137,95,37)(41,61,115,154)(42,155,116,62)(43,63,117,156)(44,157,118,64)(45,65,119,158)(46,159,120,66)(47,67,101,160)(48,141,102,68)(49,69,103,142)(50,143,104,70)(51,71,105,144)(52,145,106,72)(53,73,107,146)(54,147,108,74)(55,75,109,148)(56,149,110,76)(57,77,111,150)(58,151,112,78)(59,79,113,152)(60,153,114,80), (1,109,96,55)(2,76,97,149)(3,111,98,57)(4,78,99,151)(5,113,100,59)(6,80,81,153)(7,115,82,41)(8,62,83,155)(9,117,84,43)(10,64,85,157)(11,119,86,45)(12,66,87,159)(13,101,88,47)(14,68,89,141)(15,103,90,49)(16,70,91,143)(17,105,92,51)(18,72,93,145)(19,107,94,53)(20,74,95,147)(21,58,121,112)(22,79,122,152)(23,60,123,114)(24,61,124,154)(25,42,125,116)(26,63,126,156)(27,44,127,118)(28,65,128,158)(29,46,129,120)(30,67,130,160)(31,48,131,102)(32,69,132,142)(33,50,133,104)(34,71,134,144)(35,52,135,106)(36,73,136,146)(37,54,137,108)(38,75,138,148)(39,56,139,110)(40,77,140,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,129)(22,128)(23,127)(24,126)(25,125)(26,124)(27,123)(28,122)(29,121)(30,140)(31,139)(32,138)(33,137)(34,136)(35,135)(36,134)(37,133)(38,132)(39,131)(40,130)(41,156)(42,155)(43,154)(44,153)(45,152)(46,151)(47,150)(48,149)(49,148)(50,147)(51,146)(52,145)(53,144)(54,143)(55,142)(56,141)(57,160)(58,159)(59,158)(60,157)(61,117)(62,116)(63,115)(64,114)(65,113)(66,112)(67,111)(68,110)(69,109)(70,108)(71,107)(72,106)(73,105)(74,104)(75,103)(76,102)(77,101)(78,120)(79,119)(80,118)(81,85)(82,84)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)>;

G:=Group( (1,38,96,138)(2,139,97,39)(3,40,98,140)(4,121,99,21)(5,22,100,122)(6,123,81,23)(7,24,82,124)(8,125,83,25)(9,26,84,126)(10,127,85,27)(11,28,86,128)(12,129,87,29)(13,30,88,130)(14,131,89,31)(15,32,90,132)(16,133,91,33)(17,34,92,134)(18,135,93,35)(19,36,94,136)(20,137,95,37)(41,61,115,154)(42,155,116,62)(43,63,117,156)(44,157,118,64)(45,65,119,158)(46,159,120,66)(47,67,101,160)(48,141,102,68)(49,69,103,142)(50,143,104,70)(51,71,105,144)(52,145,106,72)(53,73,107,146)(54,147,108,74)(55,75,109,148)(56,149,110,76)(57,77,111,150)(58,151,112,78)(59,79,113,152)(60,153,114,80), (1,109,96,55)(2,76,97,149)(3,111,98,57)(4,78,99,151)(5,113,100,59)(6,80,81,153)(7,115,82,41)(8,62,83,155)(9,117,84,43)(10,64,85,157)(11,119,86,45)(12,66,87,159)(13,101,88,47)(14,68,89,141)(15,103,90,49)(16,70,91,143)(17,105,92,51)(18,72,93,145)(19,107,94,53)(20,74,95,147)(21,58,121,112)(22,79,122,152)(23,60,123,114)(24,61,124,154)(25,42,125,116)(26,63,126,156)(27,44,127,118)(28,65,128,158)(29,46,129,120)(30,67,130,160)(31,48,131,102)(32,69,132,142)(33,50,133,104)(34,71,134,144)(35,52,135,106)(36,73,136,146)(37,54,137,108)(38,75,138,148)(39,56,139,110)(40,77,140,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,129)(22,128)(23,127)(24,126)(25,125)(26,124)(27,123)(28,122)(29,121)(30,140)(31,139)(32,138)(33,137)(34,136)(35,135)(36,134)(37,133)(38,132)(39,131)(40,130)(41,156)(42,155)(43,154)(44,153)(45,152)(46,151)(47,150)(48,149)(49,148)(50,147)(51,146)(52,145)(53,144)(54,143)(55,142)(56,141)(57,160)(58,159)(59,158)(60,157)(61,117)(62,116)(63,115)(64,114)(65,113)(66,112)(67,111)(68,110)(69,109)(70,108)(71,107)(72,106)(73,105)(74,104)(75,103)(76,102)(77,101)(78,120)(79,119)(80,118)(81,85)(82,84)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94) );

G=PermutationGroup([[(1,38,96,138),(2,139,97,39),(3,40,98,140),(4,121,99,21),(5,22,100,122),(6,123,81,23),(7,24,82,124),(8,125,83,25),(9,26,84,126),(10,127,85,27),(11,28,86,128),(12,129,87,29),(13,30,88,130),(14,131,89,31),(15,32,90,132),(16,133,91,33),(17,34,92,134),(18,135,93,35),(19,36,94,136),(20,137,95,37),(41,61,115,154),(42,155,116,62),(43,63,117,156),(44,157,118,64),(45,65,119,158),(46,159,120,66),(47,67,101,160),(48,141,102,68),(49,69,103,142),(50,143,104,70),(51,71,105,144),(52,145,106,72),(53,73,107,146),(54,147,108,74),(55,75,109,148),(56,149,110,76),(57,77,111,150),(58,151,112,78),(59,79,113,152),(60,153,114,80)], [(1,109,96,55),(2,76,97,149),(3,111,98,57),(4,78,99,151),(5,113,100,59),(6,80,81,153),(7,115,82,41),(8,62,83,155),(9,117,84,43),(10,64,85,157),(11,119,86,45),(12,66,87,159),(13,101,88,47),(14,68,89,141),(15,103,90,49),(16,70,91,143),(17,105,92,51),(18,72,93,145),(19,107,94,53),(20,74,95,147),(21,58,121,112),(22,79,122,152),(23,60,123,114),(24,61,124,154),(25,42,125,116),(26,63,126,156),(27,44,127,118),(28,65,128,158),(29,46,129,120),(30,67,130,160),(31,48,131,102),(32,69,132,142),(33,50,133,104),(34,71,134,144),(35,52,135,106),(36,73,136,146),(37,54,137,108),(38,75,138,148),(39,56,139,110),(40,77,140,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,129),(22,128),(23,127),(24,126),(25,125),(26,124),(27,123),(28,122),(29,121),(30,140),(31,139),(32,138),(33,137),(34,136),(35,135),(36,134),(37,133),(38,132),(39,131),(40,130),(41,156),(42,155),(43,154),(44,153),(45,152),(46,151),(47,150),(48,149),(49,148),(50,147),(51,146),(52,145),(53,144),(54,143),(55,142),(56,141),(57,160),(58,159),(59,158),(60,157),(61,117),(62,116),(63,115),(64,114),(65,113),(66,112),(67,111),(68,110),(69,109),(70,108),(71,107),(72,106),(73,105),(74,104),(75,103),(76,102),(77,101),(78,120),(79,119),(80,118),(81,85),(82,84),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222224444444455888810···102020202020···2040···40
size111110104022448202020224420202···244448···84···4

47 irreducible representations

dim11111111222222222244444
type+++++++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5SD16D10D10D10D20C8.C22D4×D5D4×D5D5×SD16Q16⋊D5
kernelQ82D20C10.Q16D101C8C5×Q8⋊C4C4⋊D20C2×C40⋊C2C2×Q8⋊D5C2×Q8×D5Dic10C2×Dic5C5×Q8C22×D5Q8⋊C4D10C4⋊C4C2×C8C2×Q8Q8C10C4C22C2C2
# reps11111111212124222812244

Matrix representation of Q82D20 in GL4(𝔽41) generated by

1000
0100
0001
00400
,
1000
0100
001526
002626
,
303900
161400
0010
00040
,
1000
84000
0010
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,0,40,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,15,26,0,0,26,26],[30,16,0,0,39,14,0,0,0,0,1,0,0,0,0,40],[1,8,0,0,0,40,0,0,0,0,1,0,0,0,0,40] >;

Q82D20 in GAP, Magma, Sage, TeX

Q_8\rtimes_2D_{20}
% in TeX

G:=Group("Q8:2D20");
// GroupNames label

G:=SmallGroup(320,433);
// by ID

G=gap.SmallGroup(320,433);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,58,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^20=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽