Copied to
clipboard

G = Dic1021D4order 320 = 26·5

9th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1021D4, C10.762- 1+4, C53(D4×Q8), C5⋊D41Q8, C20⋊Q825C2, D106(C2×Q8), C22⋊Q89D5, C221(Q8×D5), Dic54(C2×Q8), C4.113(D4×D5), C4⋊C4.190D10, C20.236(C2×D4), D10⋊Q819C2, D102Q826C2, (C2×C20).55C23, (C2×Q8).127D10, C22⋊C4.58D10, Dic5.48(C2×D4), C10.78(C22×D4), Dic5⋊Q815C2, Dic53Q825C2, C10.35(C22×Q8), (C2×C10).176C24, Dic54D4.1C2, (C22×C4).238D10, (C22×Dic10)⋊17C2, C4⋊Dic5.216C22, (Q8×C10).108C22, C22.197(C23×D5), C23.190(C22×D5), Dic5.14D423C2, (C22×C10).204C23, (C22×C20).256C22, (C4×Dic5).114C22, (C2×Dic5).245C23, C10.D4.28C22, (C22×D5).208C23, C2.36(D4.10D10), C23.D5.117C22, D10⋊C4.107C22, (C2×Dic10).256C22, (C22×Dic5).118C22, (C2×Q8×D5)⋊7C2, C2.51(C2×D4×D5), C2.18(C2×Q8×D5), (C2×C10)⋊3(C2×Q8), (C4×C5⋊D4).7C2, (C5×C22⋊Q8)⋊12C2, (C2×C4×D5).105C22, (C2×C4).49(C22×D5), (C5×C4⋊C4).159C22, (C2×C5⋊D4).132C22, (C5×C22⋊C4).31C22, SmallGroup(320,1304)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1021D4
C1C5C10C2×C10C22×D5C2×C5⋊D4C4×C5⋊D4 — Dic1021D4
C5C2×C10 — Dic1021D4
C1C22C22⋊Q8

Generators and relations for Dic1021D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a9, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 934 in 280 conjugacy classes, 115 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C4×D4, C4×Q8, C22⋊Q8, C22⋊Q8, C4⋊Q8, C22×Q8, Dic10, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×Q8, C22×D5, C22×C10, D4×Q8, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, Q8×D5, C22×Dic5, C2×C5⋊D4, C22×C20, Q8×C10, Dic5.14D4, Dic54D4, Dic53Q8, C20⋊Q8, D10⋊Q8, D102Q8, C4×C5⋊D4, Dic5⋊Q8, C5×C22⋊Q8, C22×Dic10, C2×Q8×D5, Dic1021D4
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C24, D10, C22×D4, C22×Q8, 2- 1+4, C22×D5, D4×Q8, D4×D5, Q8×D5, C23×D5, C2×D4×D5, C2×Q8×D5, D4.10D10, Dic1021D4

Smallest permutation representation of Dic1021D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 121 11 131)(2 140 12 130)(3 139 13 129)(4 138 14 128)(5 137 15 127)(6 136 16 126)(7 135 17 125)(8 134 18 124)(9 133 19 123)(10 132 20 122)(21 119 31 109)(22 118 32 108)(23 117 33 107)(24 116 34 106)(25 115 35 105)(26 114 36 104)(27 113 37 103)(28 112 38 102)(29 111 39 101)(30 110 40 120)(41 96 51 86)(42 95 52 85)(43 94 53 84)(44 93 54 83)(45 92 55 82)(46 91 56 81)(47 90 57 100)(48 89 58 99)(49 88 59 98)(50 87 60 97)(61 155 71 145)(62 154 72 144)(63 153 73 143)(64 152 74 142)(65 151 75 141)(66 150 76 160)(67 149 77 159)(68 148 78 158)(69 147 79 157)(70 146 80 156)
(1 64 99 27)(2 73 100 36)(3 62 81 25)(4 71 82 34)(5 80 83 23)(6 69 84 32)(7 78 85 21)(8 67 86 30)(9 76 87 39)(10 65 88 28)(11 74 89 37)(12 63 90 26)(13 72 91 35)(14 61 92 24)(15 70 93 33)(16 79 94 22)(17 68 95 31)(18 77 96 40)(19 66 97 29)(20 75 98 38)(41 110 134 149)(42 119 135 158)(43 108 136 147)(44 117 137 156)(45 106 138 145)(46 115 139 154)(47 104 140 143)(48 113 121 152)(49 102 122 141)(50 111 123 150)(51 120 124 159)(52 109 125 148)(53 118 126 157)(54 107 127 146)(55 116 128 155)(56 105 129 144)(57 114 130 153)(58 103 131 142)(59 112 132 151)(60 101 133 160)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(41 145)(42 146)(43 147)(44 148)(45 149)(46 150)(47 151)(48 152)(49 153)(50 154)(51 155)(52 156)(53 157)(54 158)(55 159)(56 160)(57 141)(58 142)(59 143)(60 144)(61 96)(62 97)(63 98)(64 99)(65 100)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(101 129)(102 130)(103 131)(104 132)(105 133)(106 134)(107 135)(108 136)(109 137)(110 138)(111 139)(112 140)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 127)(120 128)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,121,11,131)(2,140,12,130)(3,139,13,129)(4,138,14,128)(5,137,15,127)(6,136,16,126)(7,135,17,125)(8,134,18,124)(9,133,19,123)(10,132,20,122)(21,119,31,109)(22,118,32,108)(23,117,33,107)(24,116,34,106)(25,115,35,105)(26,114,36,104)(27,113,37,103)(28,112,38,102)(29,111,39,101)(30,110,40,120)(41,96,51,86)(42,95,52,85)(43,94,53,84)(44,93,54,83)(45,92,55,82)(46,91,56,81)(47,90,57,100)(48,89,58,99)(49,88,59,98)(50,87,60,97)(61,155,71,145)(62,154,72,144)(63,153,73,143)(64,152,74,142)(65,151,75,141)(66,150,76,160)(67,149,77,159)(68,148,78,158)(69,147,79,157)(70,146,80,156), (1,64,99,27)(2,73,100,36)(3,62,81,25)(4,71,82,34)(5,80,83,23)(6,69,84,32)(7,78,85,21)(8,67,86,30)(9,76,87,39)(10,65,88,28)(11,74,89,37)(12,63,90,26)(13,72,91,35)(14,61,92,24)(15,70,93,33)(16,79,94,22)(17,68,95,31)(18,77,96,40)(19,66,97,29)(20,75,98,38)(41,110,134,149)(42,119,135,158)(43,108,136,147)(44,117,137,156)(45,106,138,145)(46,115,139,154)(47,104,140,143)(48,113,121,152)(49,102,122,141)(50,111,123,150)(51,120,124,159)(52,109,125,148)(53,118,126,157)(54,107,127,146)(55,116,128,155)(56,105,129,144)(57,114,130,153)(58,103,131,142)(59,112,132,151)(60,101,133,160), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,153)(50,154)(51,155)(52,156)(53,157)(54,158)(55,159)(56,160)(57,141)(58,142)(59,143)(60,144)(61,96)(62,97)(63,98)(64,99)(65,100)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,121,11,131)(2,140,12,130)(3,139,13,129)(4,138,14,128)(5,137,15,127)(6,136,16,126)(7,135,17,125)(8,134,18,124)(9,133,19,123)(10,132,20,122)(21,119,31,109)(22,118,32,108)(23,117,33,107)(24,116,34,106)(25,115,35,105)(26,114,36,104)(27,113,37,103)(28,112,38,102)(29,111,39,101)(30,110,40,120)(41,96,51,86)(42,95,52,85)(43,94,53,84)(44,93,54,83)(45,92,55,82)(46,91,56,81)(47,90,57,100)(48,89,58,99)(49,88,59,98)(50,87,60,97)(61,155,71,145)(62,154,72,144)(63,153,73,143)(64,152,74,142)(65,151,75,141)(66,150,76,160)(67,149,77,159)(68,148,78,158)(69,147,79,157)(70,146,80,156), (1,64,99,27)(2,73,100,36)(3,62,81,25)(4,71,82,34)(5,80,83,23)(6,69,84,32)(7,78,85,21)(8,67,86,30)(9,76,87,39)(10,65,88,28)(11,74,89,37)(12,63,90,26)(13,72,91,35)(14,61,92,24)(15,70,93,33)(16,79,94,22)(17,68,95,31)(18,77,96,40)(19,66,97,29)(20,75,98,38)(41,110,134,149)(42,119,135,158)(43,108,136,147)(44,117,137,156)(45,106,138,145)(46,115,139,154)(47,104,140,143)(48,113,121,152)(49,102,122,141)(50,111,123,150)(51,120,124,159)(52,109,125,148)(53,118,126,157)(54,107,127,146)(55,116,128,155)(56,105,129,144)(57,114,130,153)(58,103,131,142)(59,112,132,151)(60,101,133,160), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,153)(50,154)(51,155)(52,156)(53,157)(54,158)(55,159)(56,160)(57,141)(58,142)(59,143)(60,144)(61,96)(62,97)(63,98)(64,99)(65,100)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,121,11,131),(2,140,12,130),(3,139,13,129),(4,138,14,128),(5,137,15,127),(6,136,16,126),(7,135,17,125),(8,134,18,124),(9,133,19,123),(10,132,20,122),(21,119,31,109),(22,118,32,108),(23,117,33,107),(24,116,34,106),(25,115,35,105),(26,114,36,104),(27,113,37,103),(28,112,38,102),(29,111,39,101),(30,110,40,120),(41,96,51,86),(42,95,52,85),(43,94,53,84),(44,93,54,83),(45,92,55,82),(46,91,56,81),(47,90,57,100),(48,89,58,99),(49,88,59,98),(50,87,60,97),(61,155,71,145),(62,154,72,144),(63,153,73,143),(64,152,74,142),(65,151,75,141),(66,150,76,160),(67,149,77,159),(68,148,78,158),(69,147,79,157),(70,146,80,156)], [(1,64,99,27),(2,73,100,36),(3,62,81,25),(4,71,82,34),(5,80,83,23),(6,69,84,32),(7,78,85,21),(8,67,86,30),(9,76,87,39),(10,65,88,28),(11,74,89,37),(12,63,90,26),(13,72,91,35),(14,61,92,24),(15,70,93,33),(16,79,94,22),(17,68,95,31),(18,77,96,40),(19,66,97,29),(20,75,98,38),(41,110,134,149),(42,119,135,158),(43,108,136,147),(44,117,137,156),(45,106,138,145),(46,115,139,154),(47,104,140,143),(48,113,121,152),(49,102,122,141),(50,111,123,150),(51,120,124,159),(52,109,125,148),(53,118,126,157),(54,107,127,146),(55,116,128,155),(56,105,129,144),(57,114,130,153),(58,103,131,142),(59,112,132,151),(60,101,133,160)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(41,145),(42,146),(43,147),(44,148),(45,149),(46,150),(47,151),(48,152),(49,153),(50,154),(51,155),(52,156),(53,157),(54,158),(55,159),(56,160),(57,141),(58,142),(59,143),(60,144),(61,96),(62,97),(63,98),(64,99),(65,100),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(101,129),(102,130),(103,131),(104,132),(105,133),(106,134),(107,135),(108,136),(109,137),(110,138),(111,139),(112,140),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,127),(120,128)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4G4H···4M4N4O4P4Q5A5B10A···10F10G10H10I10J20A···20H20I···20P
order12222222444···44···444445510···101010101020···2020···20
size1111221010224···410···1020202020222···244444···48···8

53 irreducible representations

dim11111111111122222224444
type+++++++++++++-+++++-+--
imageC1C2C2C2C2C2C2C2C2C2C2C2D4Q8D5D10D10D10D102- 1+4D4×D5Q8×D5D4.10D10
kernelDic1021D4Dic5.14D4Dic54D4Dic53Q8C20⋊Q8D10⋊Q8D102Q8C4×C5⋊D4Dic5⋊Q8C5×C22⋊Q8C22×Dic10C2×Q8×D5Dic10C5⋊D4C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8C10C4C22C2
# reps12212211111144246221444

Matrix representation of Dic1021D4 in GL6(𝔽41)

100000
010000
0040100
0053500
0000130
00003040
,
4000000
0400000
006100
0063500
000001
0000400
,
950000
0320000
00354000
0035600
0000400
0000040
,
950000
25320000
0040000
0004000
0000400
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,30,0,0,0,0,30,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,6,0,0,0,0,1,35,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[9,0,0,0,0,0,5,32,0,0,0,0,0,0,35,35,0,0,0,0,40,6,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,25,0,0,0,0,5,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;

Dic1021D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_{21}D_4
% in TeX

G:=Group("Dic10:21D4");
// GroupNames label

G:=SmallGroup(320,1304);
// by ID

G=gap.SmallGroup(320,1304);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,570,185,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^9,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽