Copied to
clipboard

G = Q85D20order 320 = 26·5

1st semidirect product of Q8 and D20 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q85D20, C42.128D10, C10.112- 1+4, (C4×Q8)⋊9D5, (C5×Q8)⋊10D4, (C4×D20)⋊38C2, (Q8×C20)⋊11C2, C52(Q85D4), C20.57(C2×D4), C4.25(C2×D20), C4⋊D2017C2, C4⋊C4.295D10, D1013(C4○D4), D102Q818C2, C4.D2020C2, (C2×Q8).204D10, C2.21(C22×D20), C10.19(C22×D4), (C4×C20).172C22, (C2×C20).498C23, (C2×C10).120C24, D10⋊C4.6C22, (C2×D20).224C22, C4⋊Dic5.306C22, (Q8×C10).220C22, (C2×Dic5).54C23, (C22×D5).45C23, C22.141(C23×D5), C2.12(Q8.10D10), (C2×Dic10).155C22, (C2×Q8×D5)⋊4C2, C2.29(D5×C4○D4), (C2×Q82D5)⋊3C2, (C2×C4×D5).81C22, C10.145(C2×C4○D4), (C5×C4⋊C4).348C22, (C2×C4).168(C22×D5), SmallGroup(320,1248)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Q85D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — Q85D20
C5C2×C10 — Q85D20
C1C22C4×Q8

Generators and relations for Q85D20
 G = < a,b,c,d | a4=c20=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 1126 in 290 conjugacy classes, 113 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C4.4D4, C22×Q8, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22×D5, Q85D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, Q8×D5, Q82D5, Q8×C10, C4×D20, C4.D20, C4⋊D20, D102Q8, Q8×C20, C2×Q8×D5, C2×Q82D5, Q85D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2- 1+4, D20, C22×D5, Q85D4, C2×D20, C23×D5, C22×D20, Q8.10D10, D5×C4○D4, Q85D20

Smallest permutation representation of Q85D20
On 160 points
Generators in S160
(1 55 79 39)(2 56 80 40)(3 57 61 21)(4 58 62 22)(5 59 63 23)(6 60 64 24)(7 41 65 25)(8 42 66 26)(9 43 67 27)(10 44 68 28)(11 45 69 29)(12 46 70 30)(13 47 71 31)(14 48 72 32)(15 49 73 33)(16 50 74 34)(17 51 75 35)(18 52 76 36)(19 53 77 37)(20 54 78 38)(81 160 134 108)(82 141 135 109)(83 142 136 110)(84 143 137 111)(85 144 138 112)(86 145 139 113)(87 146 140 114)(88 147 121 115)(89 148 122 116)(90 149 123 117)(91 150 124 118)(92 151 125 119)(93 152 126 120)(94 153 127 101)(95 154 128 102)(96 155 129 103)(97 156 130 104)(98 157 131 105)(99 158 132 106)(100 159 133 107)
(1 93 79 126)(2 127 80 94)(3 95 61 128)(4 129 62 96)(5 97 63 130)(6 131 64 98)(7 99 65 132)(8 133 66 100)(9 81 67 134)(10 135 68 82)(11 83 69 136)(12 137 70 84)(13 85 71 138)(14 139 72 86)(15 87 73 140)(16 121 74 88)(17 89 75 122)(18 123 76 90)(19 91 77 124)(20 125 78 92)(21 154 57 102)(22 103 58 155)(23 156 59 104)(24 105 60 157)(25 158 41 106)(26 107 42 159)(27 160 43 108)(28 109 44 141)(29 142 45 110)(30 111 46 143)(31 144 47 112)(32 113 48 145)(33 146 49 114)(34 115 50 147)(35 148 51 116)(36 117 52 149)(37 150 53 118)(38 119 54 151)(39 152 55 120)(40 101 56 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(41 53)(42 52)(43 51)(44 50)(45 49)(46 48)(54 60)(55 59)(56 58)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(81 122)(82 121)(83 140)(84 139)(85 138)(86 137)(87 136)(88 135)(89 134)(90 133)(91 132)(92 131)(93 130)(94 129)(95 128)(96 127)(97 126)(98 125)(99 124)(100 123)(101 155)(102 154)(103 153)(104 152)(105 151)(106 150)(107 149)(108 148)(109 147)(110 146)(111 145)(112 144)(113 143)(114 142)(115 141)(116 160)(117 159)(118 158)(119 157)(120 156)

G:=sub<Sym(160)| (1,55,79,39)(2,56,80,40)(3,57,61,21)(4,58,62,22)(5,59,63,23)(6,60,64,24)(7,41,65,25)(8,42,66,26)(9,43,67,27)(10,44,68,28)(11,45,69,29)(12,46,70,30)(13,47,71,31)(14,48,72,32)(15,49,73,33)(16,50,74,34)(17,51,75,35)(18,52,76,36)(19,53,77,37)(20,54,78,38)(81,160,134,108)(82,141,135,109)(83,142,136,110)(84,143,137,111)(85,144,138,112)(86,145,139,113)(87,146,140,114)(88,147,121,115)(89,148,122,116)(90,149,123,117)(91,150,124,118)(92,151,125,119)(93,152,126,120)(94,153,127,101)(95,154,128,102)(96,155,129,103)(97,156,130,104)(98,157,131,105)(99,158,132,106)(100,159,133,107), (1,93,79,126)(2,127,80,94)(3,95,61,128)(4,129,62,96)(5,97,63,130)(6,131,64,98)(7,99,65,132)(8,133,66,100)(9,81,67,134)(10,135,68,82)(11,83,69,136)(12,137,70,84)(13,85,71,138)(14,139,72,86)(15,87,73,140)(16,121,74,88)(17,89,75,122)(18,123,76,90)(19,91,77,124)(20,125,78,92)(21,154,57,102)(22,103,58,155)(23,156,59,104)(24,105,60,157)(25,158,41,106)(26,107,42,159)(27,160,43,108)(28,109,44,141)(29,142,45,110)(30,111,46,143)(31,144,47,112)(32,113,48,145)(33,146,49,114)(34,115,50,147)(35,148,51,116)(36,117,52,149)(37,150,53,118)(38,119,54,151)(39,152,55,120)(40,101,56,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,122)(82,121)(83,140)(84,139)(85,138)(86,137)(87,136)(88,135)(89,134)(90,133)(91,132)(92,131)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(101,155)(102,154)(103,153)(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,145)(112,144)(113,143)(114,142)(115,141)(116,160)(117,159)(118,158)(119,157)(120,156)>;

G:=Group( (1,55,79,39)(2,56,80,40)(3,57,61,21)(4,58,62,22)(5,59,63,23)(6,60,64,24)(7,41,65,25)(8,42,66,26)(9,43,67,27)(10,44,68,28)(11,45,69,29)(12,46,70,30)(13,47,71,31)(14,48,72,32)(15,49,73,33)(16,50,74,34)(17,51,75,35)(18,52,76,36)(19,53,77,37)(20,54,78,38)(81,160,134,108)(82,141,135,109)(83,142,136,110)(84,143,137,111)(85,144,138,112)(86,145,139,113)(87,146,140,114)(88,147,121,115)(89,148,122,116)(90,149,123,117)(91,150,124,118)(92,151,125,119)(93,152,126,120)(94,153,127,101)(95,154,128,102)(96,155,129,103)(97,156,130,104)(98,157,131,105)(99,158,132,106)(100,159,133,107), (1,93,79,126)(2,127,80,94)(3,95,61,128)(4,129,62,96)(5,97,63,130)(6,131,64,98)(7,99,65,132)(8,133,66,100)(9,81,67,134)(10,135,68,82)(11,83,69,136)(12,137,70,84)(13,85,71,138)(14,139,72,86)(15,87,73,140)(16,121,74,88)(17,89,75,122)(18,123,76,90)(19,91,77,124)(20,125,78,92)(21,154,57,102)(22,103,58,155)(23,156,59,104)(24,105,60,157)(25,158,41,106)(26,107,42,159)(27,160,43,108)(28,109,44,141)(29,142,45,110)(30,111,46,143)(31,144,47,112)(32,113,48,145)(33,146,49,114)(34,115,50,147)(35,148,51,116)(36,117,52,149)(37,150,53,118)(38,119,54,151)(39,152,55,120)(40,101,56,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,122)(82,121)(83,140)(84,139)(85,138)(86,137)(87,136)(88,135)(89,134)(90,133)(91,132)(92,131)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(101,155)(102,154)(103,153)(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,145)(112,144)(113,143)(114,142)(115,141)(116,160)(117,159)(118,158)(119,157)(120,156) );

G=PermutationGroup([[(1,55,79,39),(2,56,80,40),(3,57,61,21),(4,58,62,22),(5,59,63,23),(6,60,64,24),(7,41,65,25),(8,42,66,26),(9,43,67,27),(10,44,68,28),(11,45,69,29),(12,46,70,30),(13,47,71,31),(14,48,72,32),(15,49,73,33),(16,50,74,34),(17,51,75,35),(18,52,76,36),(19,53,77,37),(20,54,78,38),(81,160,134,108),(82,141,135,109),(83,142,136,110),(84,143,137,111),(85,144,138,112),(86,145,139,113),(87,146,140,114),(88,147,121,115),(89,148,122,116),(90,149,123,117),(91,150,124,118),(92,151,125,119),(93,152,126,120),(94,153,127,101),(95,154,128,102),(96,155,129,103),(97,156,130,104),(98,157,131,105),(99,158,132,106),(100,159,133,107)], [(1,93,79,126),(2,127,80,94),(3,95,61,128),(4,129,62,96),(5,97,63,130),(6,131,64,98),(7,99,65,132),(8,133,66,100),(9,81,67,134),(10,135,68,82),(11,83,69,136),(12,137,70,84),(13,85,71,138),(14,139,72,86),(15,87,73,140),(16,121,74,88),(17,89,75,122),(18,123,76,90),(19,91,77,124),(20,125,78,92),(21,154,57,102),(22,103,58,155),(23,156,59,104),(24,105,60,157),(25,158,41,106),(26,107,42,159),(27,160,43,108),(28,109,44,141),(29,142,45,110),(30,111,46,143),(31,144,47,112),(32,113,48,145),(33,146,49,114),(34,115,50,147),(35,148,51,116),(36,117,52,149),(37,150,53,118),(38,119,54,151),(39,152,55,120),(40,101,56,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(41,53),(42,52),(43,51),(44,50),(45,49),(46,48),(54,60),(55,59),(56,58),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(81,122),(82,121),(83,140),(84,139),(85,138),(86,137),(87,136),(88,135),(89,134),(90,133),(91,132),(92,131),(93,130),(94,129),(95,128),(96,127),(97,126),(98,125),(99,124),(100,123),(101,155),(102,154),(103,153),(104,152),(105,151),(106,150),(107,149),(108,148),(109,147),(110,146),(111,145),(112,144),(113,143),(114,142),(115,141),(116,160),(117,159),(118,158),(119,157),(120,156)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4H4I4J4K4L4M4N4O4P5A5B10A···10F20A···20H20I···20AF
order1222222224···4444444445510···1020···2020···20
size111110102020202···24441010202020222···22···24···4

65 irreducible representations

dim111111112222222444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D202- 1+4Q8.10D10D5×C4○D4
kernelQ85D20C4×D20C4.D20C4⋊D20D102Q8Q8×C20C2×Q8×D5C2×Q82D5C5×Q8C4×Q8D10C42C4⋊C4C2×Q8Q8C10C2C2
# reps1333311142466216144

Matrix representation of Q85D20 in GL6(𝔽41)

4000000
0400000
0040000
0004000
000090
00002832
,
4000000
0400000
001000
000100
00002937
00002612
,
120000
40400000
0040100
0053500
000010
00003540
,
100000
40400000
0040000
005100
000010
00003540

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,28,0,0,0,0,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,26,0,0,0,0,37,12],[1,40,0,0,0,0,2,40,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,35,0,0,0,0,0,40],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,40,5,0,0,0,0,0,1,0,0,0,0,0,0,1,35,0,0,0,0,0,40] >;

Q85D20 in GAP, Magma, Sage, TeX

Q_8\rtimes_5D_{20}
% in TeX

G:=Group("Q8:5D20");
// GroupNames label

G:=SmallGroup(320,1248);
// by ID

G=gap.SmallGroup(320,1248);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,184,675,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^20=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽