# Extensions 1→N→G→Q→1 with N=C2×C10.D4 and Q=C2

Direct product G=N×Q with N=C2×C10.D4 and Q=C2
dρLabelID
C22×C10.D4320C2^2xC10.D4320,1455

Semidirect products G=N:Q with N=C2×C10.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C10.D4)⋊1C2 = D102(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):1C2320,294
(C2×C10.D4)⋊2C2 = C10.54(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):2C2320,296
(C2×C10.D4)⋊3C2 = C10.(C4⋊D4)φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):3C2320,302
(C2×C10.D4)⋊4C2 = (C22×D5).Q8φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):4C2320,303
(C2×C10.D4)⋊5C2 = (C2×C42)⋊D5φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):5C2320,567
(C2×C10.D4)⋊6C2 = C24.44D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):6C2320,569
(C2×C10.D4)⋊7C2 = C24.3D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):7C2320,571
(C2×C10.D4)⋊8C2 = C24.46D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):8C2320,573
(C2×C10.D4)⋊9C2 = C24.7D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):9C2320,576
(C2×C10.D4)⋊10C2 = C24.9D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):10C2320,579
(C2×C10.D4)⋊11C2 = C24.13D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):11C2320,584
(C2×C10.D4)⋊12C2 = C24.14D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):12C2320,586
(C2×C10.D4)⋊13C2 = D105(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):13C2320,616
(C2×C10.D4)⋊14C2 = (C2×C20).289D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):14C2320,619
(C2×C10.D4)⋊15C2 = C24.62D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):15C2320,837
(C2×C10.D4)⋊16C2 = C2×C422D5φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):16C2320,1150
(C2×C10.D4)⋊17C2 = C2×C20.48D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):17C2320,1456
(C2×C10.D4)⋊18C2 = C2×C23.23D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):18C2320,1461
(C2×C10.D4)⋊19C2 = (C2×Dic5)⋊3D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):19C2320,299
(C2×C10.D4)⋊20C2 = C24.6D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):20C2320,575
(C2×C10.D4)⋊21C2 = C2×Dic5.14D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):21C2320,1153
(C2×C10.D4)⋊22C2 = C2×D10⋊D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):22C2320,1161
(C2×C10.D4)⋊23C2 = C2×D10.13D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):23C2320,1177
(C2×C10.D4)⋊24C2 = D45Dic10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):24C2320,1211
(C2×C10.D4)⋊25C2 = C42.104D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):25C2320,1212
(C2×C10.D4)⋊26C2 = C10.802- 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):26C2320,1322
(C2×C10.D4)⋊27C2 = C10.822- 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):27C2320,1327
(C2×C10.D4)⋊28C2 = C10.682- 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):28C2320,1269
(C2×C10.D4)⋊29C2 = C10.352+ 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):29C2320,1274
(C2×C10.D4)⋊30C2 = C10.572+ 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):30C2320,1317
(C2×C10.D4)⋊31C2 = D103(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):31C2320,295
(C2×C10.D4)⋊32C2 = C24.4D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):32C2320,572
(C2×C10.D4)⋊33C2 = C2×C23.11D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):33C2320,1152
(C2×C10.D4)⋊34C2 = C2×C23.D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):34C2320,1154
(C2×C10.D4)⋊35C2 = C2×Dic54D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):35C2320,1157
(C2×C10.D4)⋊36C2 = C2×D10.12D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):36C2320,1160
(C2×C10.D4)⋊37C2 = C2×D5×C4⋊C4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):37C2320,1173
(C2×C10.D4)⋊38C2 = C42.108D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):38C2320,1218
(C2×C10.D4)⋊39C2 = C42.118D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):39C2320,1236
(C2×C10.D4)⋊40C2 = C10.342+ 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):40C2320,1273
(C2×C10.D4)⋊41C2 = C10.522+ 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):41C2320,1308
(C2×C10.D4)⋊42C2 = (C2×C20).56D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):42C2320,621
(C2×C10.D4)⋊43C2 = C24.20D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):43C2320,849
(C2×C10.D4)⋊44C2 = C2×D10⋊Q8φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):44C2320,1180
(C2×C10.D4)⋊45C2 = C2×C4⋊C4⋊D5φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):45C2320,1184
(C2×C10.D4)⋊46C2 = C42.96D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):46C2320,1203
(C2×C10.D4)⋊47C2 = C2×C23.18D10φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):47C2320,1468
(C2×C10.D4)⋊48C2 = C2×Dic5⋊D4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):48C2320,1474
(C2×C10.D4)⋊49C2 = C2×D103Q8φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):49C2320,1485
(C2×C10.D4)⋊50C2 = C10.1042- 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4):50C2320,1496
(C2×C10.D4)⋊51C2 = C2×C42⋊D5φ: trivial image160(C2xC10.D4):51C2320,1144
(C2×C10.D4)⋊52C2 = C2×C4×C5⋊D4φ: trivial image160(C2xC10.D4):52C2320,1460

Non-split extensions G=N.Q with N=C2×C10.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C10.D4).1C2 = (C22×C4).F5φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4).1C2320,252
(C2×C10.D4).2C2 = C22.F5⋊C4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4).2C2320,257
(C2×C10.D4).3C2 = (C2×C20)⋊Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).3C2320,273
(C2×C10.D4).4C2 = C10.49(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).4C2320,274
(C2×C10.D4).5C2 = C52(C428C4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).5C2320,277
(C2×C10.D4).6C2 = C10.51(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).6C2320,279
(C2×C10.D4).7C2 = C4⋊Dic515C4φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).7C2320,281
(C2×C10.D4).8C2 = C2.(C20⋊Q8)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).8C2320,284
(C2×C10.D4).9C2 = (C2×Dic5).Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).9C2320,285
(C2×C10.D4).10C2 = (C2×C4).Dic10φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).10C2320,287
(C2×C10.D4).11C2 = C207(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).11C2320,555
(C2×C10.D4).12C2 = C10.92(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).12C2320,560
(C2×C10.D4).13C2 = C204(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).13C2320,600
(C2×C10.D4).14C2 = C205(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).14C2320,603
(C2×C10.D4).15C2 = (C2×C4)⋊Dic10φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).15C2320,606
(C2×C10.D4).16C2 = (C2×C20).287D4φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).16C2320,607
(C2×C10.D4).17C2 = (C2×C20).54D4φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).17C2320,611
(C2×C10.D4).18C2 = C2×C20.6Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).18C2320,1141
(C2×C10.D4).19C2 = C10.52(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).19C2320,282
(C2×C10.D4).20C2 = (C2×Dic5)⋊Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).20C2320,283
(C2×C10.D4).21C2 = (C2×C20).28D4φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).21C2320,286
(C2×C10.D4).22C2 = C10.(C4⋊Q8)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).22C2320,288
(C2×C10.D4).23C2 = C2×C20⋊Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).23C2320,1169
(C2×C10.D4).24C2 = C2×C4.Dic10φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).24C2320,1171
(C2×C10.D4).25C2 = C10.502+ 1+4φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4).25C2320,1295
(C2×C10.D4).26C2 = (C2×Dic5)⋊C8φ: C2/C1C2 ⊆ Out C2×C10.D4160(C2xC10.D4).26C2320,27
(C2×C10.D4).27C2 = Dic52C42φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).27C2320,276
(C2×C10.D4).28C2 = C2.(C4×D20)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).28C2320,280
(C2×C10.D4).29C2 = C10.96(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).29C2320,599
(C2×C10.D4).30C2 = C2×Dic53Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).30C2320,1168
(C2×C10.D4).31C2 = C2×Dic5.Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).31C2320,1170
(C2×C10.D4).32C2 = C10.97(C4×D4)φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).32C2320,605
(C2×C10.D4).33C2 = (C2×C20).288D4φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).33C2320,609
(C2×C10.D4).34C2 = (C2×C20).53D4φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).34C2320,610
(C2×C10.D4).35C2 = C10.C22≀C2φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).35C2320,856
(C2×C10.D4).36C2 = C2×Dic5⋊Q8φ: C2/C1C2 ⊆ Out C2×C10.D4320(C2xC10.D4).36C2320,1482
(C2×C10.D4).37C2 = C4×C10.D4φ: trivial image320(C2xC10.D4).37C2320,558
(C2×C10.D4).38C2 = C2×C4×Dic10φ: trivial image320(C2xC10.D4).38C2320,1139

׿
×
𝔽