metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×C20).289D4, (C22×D5).4Q8, C22.50(Q8×D5), C2.7(C20⋊D4), (C2×Dic5).69D4, C22.248(D4×D5), (C22×C4).44D10, C10.16(C4⋊1D4), C5⋊3(C23.4Q8), C2.8(D10⋊3Q8), C10.50(C22⋊Q8), C2.22(D10⋊Q8), (C22×C20).31C22, (C23×D5).21C22, C23.381(C22×D5), C10.10C42⋊43C2, C22.109(C4○D20), (C22×C10).356C23, C22.52(Q8⋊2D5), C2.21(D10.13D4), C10.54(C22.D4), (C22×Dic5).61C22, C2.14(C23.23D10), (C2×C4⋊C4)⋊10D5, (C10×C4⋊C4)⋊26C2, (C2×C10).85(C2×Q8), (C2×C10).453(C2×D4), (C2×C4).42(C5⋊D4), (C2×C10.D4)⋊14C2, C22.141(C2×C5⋊D4), (C2×D10⋊C4).16C2, (C2×C10).191(C4○D4), SmallGroup(320,619)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×C20).289D4
G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=ab-1, dbd=ab9, dcd=ab10c-1 >
Subgroups: 774 in 186 conjugacy classes, 61 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.4Q8, C10.D4, D10⋊C4, C5×C4⋊C4, C22×Dic5, C22×Dic5, C22×C20, C22×C20, C23×D5, C10.10C42, C2×C10.D4, C2×D10⋊C4, C2×D10⋊C4, C10×C4⋊C4, (C2×C20).289D4
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C22.D4, C4⋊1D4, C5⋊D4, C22×D5, C23.4Q8, C4○D20, D4×D5, Q8×D5, Q8⋊2D5, C2×C5⋊D4, D10.13D4, D10⋊Q8, C23.23D10, C20⋊D4, D10⋊3Q8, (C2×C20).289D4
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 41)(18 42)(19 43)(20 44)(21 158)(22 159)(23 160)(24 141)(25 142)(26 143)(27 144)(28 145)(29 146)(30 147)(31 148)(32 149)(33 150)(34 151)(35 152)(36 153)(37 154)(38 155)(39 156)(40 157)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 121)(69 122)(70 123)(71 124)(72 125)(73 126)(74 127)(75 128)(76 129)(77 130)(78 131)(79 132)(80 133)(81 106)(82 107)(83 108)(84 109)(85 110)(86 111)(87 112)(88 113)(89 114)(90 115)(91 116)(92 117)(93 118)(94 119)(95 120)(96 101)(97 102)(98 103)(99 104)(100 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 97 129 159)(2 101 130 21)(3 95 131 157)(4 119 132 39)(5 93 133 155)(6 117 134 37)(7 91 135 153)(8 115 136 35)(9 89 137 151)(10 113 138 33)(11 87 139 149)(12 111 140 31)(13 85 121 147)(14 109 122 29)(15 83 123 145)(16 107 124 27)(17 81 125 143)(18 105 126 25)(19 99 127 141)(20 103 128 23)(22 45 102 76)(24 43 104 74)(26 41 106 72)(28 59 108 70)(30 57 110 68)(32 55 112 66)(34 53 114 64)(36 51 116 62)(38 49 118 80)(40 47 120 78)(42 100 73 142)(44 98 75 160)(46 96 77 158)(48 94 79 156)(50 92 61 154)(52 90 63 152)(54 88 65 150)(56 86 67 148)(58 84 69 146)(60 82 71 144)
(2 54)(3 19)(4 52)(5 17)(6 50)(7 15)(8 48)(9 13)(10 46)(12 44)(14 42)(16 60)(18 58)(20 56)(21 103)(22 87)(23 101)(24 85)(25 119)(26 83)(27 117)(28 81)(29 115)(30 99)(31 113)(32 97)(33 111)(34 95)(35 109)(36 93)(37 107)(38 91)(39 105)(40 89)(41 49)(43 47)(51 59)(53 57)(61 134)(62 70)(63 132)(64 68)(65 130)(67 128)(69 126)(71 124)(72 80)(73 122)(74 78)(75 140)(77 138)(79 136)(82 154)(84 152)(86 150)(88 148)(90 146)(92 144)(94 142)(96 160)(98 158)(100 156)(102 149)(104 147)(106 145)(108 143)(110 141)(112 159)(114 157)(116 155)(118 153)(120 151)(121 137)(123 135)(125 133)(127 131)
G:=sub<Sym(160)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,158)(22,159)(23,160)(24,141)(25,142)(26,143)(27,144)(28,145)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,155)(39,156)(40,157)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,106)(82,107)(83,108)(84,109)(85,110)(86,111)(87,112)(88,113)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,101)(97,102)(98,103)(99,104)(100,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,97,129,159)(2,101,130,21)(3,95,131,157)(4,119,132,39)(5,93,133,155)(6,117,134,37)(7,91,135,153)(8,115,136,35)(9,89,137,151)(10,113,138,33)(11,87,139,149)(12,111,140,31)(13,85,121,147)(14,109,122,29)(15,83,123,145)(16,107,124,27)(17,81,125,143)(18,105,126,25)(19,99,127,141)(20,103,128,23)(22,45,102,76)(24,43,104,74)(26,41,106,72)(28,59,108,70)(30,57,110,68)(32,55,112,66)(34,53,114,64)(36,51,116,62)(38,49,118,80)(40,47,120,78)(42,100,73,142)(44,98,75,160)(46,96,77,158)(48,94,79,156)(50,92,61,154)(52,90,63,152)(54,88,65,150)(56,86,67,148)(58,84,69,146)(60,82,71,144), (2,54)(3,19)(4,52)(5,17)(6,50)(7,15)(8,48)(9,13)(10,46)(12,44)(14,42)(16,60)(18,58)(20,56)(21,103)(22,87)(23,101)(24,85)(25,119)(26,83)(27,117)(28,81)(29,115)(30,99)(31,113)(32,97)(33,111)(34,95)(35,109)(36,93)(37,107)(38,91)(39,105)(40,89)(41,49)(43,47)(51,59)(53,57)(61,134)(62,70)(63,132)(64,68)(65,130)(67,128)(69,126)(71,124)(72,80)(73,122)(74,78)(75,140)(77,138)(79,136)(82,154)(84,152)(86,150)(88,148)(90,146)(92,144)(94,142)(96,160)(98,158)(100,156)(102,149)(104,147)(106,145)(108,143)(110,141)(112,159)(114,157)(116,155)(118,153)(120,151)(121,137)(123,135)(125,133)(127,131)>;
G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,158)(22,159)(23,160)(24,141)(25,142)(26,143)(27,144)(28,145)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,155)(39,156)(40,157)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,106)(82,107)(83,108)(84,109)(85,110)(86,111)(87,112)(88,113)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,101)(97,102)(98,103)(99,104)(100,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,97,129,159)(2,101,130,21)(3,95,131,157)(4,119,132,39)(5,93,133,155)(6,117,134,37)(7,91,135,153)(8,115,136,35)(9,89,137,151)(10,113,138,33)(11,87,139,149)(12,111,140,31)(13,85,121,147)(14,109,122,29)(15,83,123,145)(16,107,124,27)(17,81,125,143)(18,105,126,25)(19,99,127,141)(20,103,128,23)(22,45,102,76)(24,43,104,74)(26,41,106,72)(28,59,108,70)(30,57,110,68)(32,55,112,66)(34,53,114,64)(36,51,116,62)(38,49,118,80)(40,47,120,78)(42,100,73,142)(44,98,75,160)(46,96,77,158)(48,94,79,156)(50,92,61,154)(52,90,63,152)(54,88,65,150)(56,86,67,148)(58,84,69,146)(60,82,71,144), (2,54)(3,19)(4,52)(5,17)(6,50)(7,15)(8,48)(9,13)(10,46)(12,44)(14,42)(16,60)(18,58)(20,56)(21,103)(22,87)(23,101)(24,85)(25,119)(26,83)(27,117)(28,81)(29,115)(30,99)(31,113)(32,97)(33,111)(34,95)(35,109)(36,93)(37,107)(38,91)(39,105)(40,89)(41,49)(43,47)(51,59)(53,57)(61,134)(62,70)(63,132)(64,68)(65,130)(67,128)(69,126)(71,124)(72,80)(73,122)(74,78)(75,140)(77,138)(79,136)(82,154)(84,152)(86,150)(88,148)(90,146)(92,144)(94,142)(96,160)(98,158)(100,156)(102,149)(104,147)(106,145)(108,143)(110,141)(112,159)(114,157)(116,155)(118,153)(120,151)(121,137)(123,135)(125,133)(127,131) );
G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,41),(18,42),(19,43),(20,44),(21,158),(22,159),(23,160),(24,141),(25,142),(26,143),(27,144),(28,145),(29,146),(30,147),(31,148),(32,149),(33,150),(34,151),(35,152),(36,153),(37,154),(38,155),(39,156),(40,157),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,121),(69,122),(70,123),(71,124),(72,125),(73,126),(74,127),(75,128),(76,129),(77,130),(78,131),(79,132),(80,133),(81,106),(82,107),(83,108),(84,109),(85,110),(86,111),(87,112),(88,113),(89,114),(90,115),(91,116),(92,117),(93,118),(94,119),(95,120),(96,101),(97,102),(98,103),(99,104),(100,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,97,129,159),(2,101,130,21),(3,95,131,157),(4,119,132,39),(5,93,133,155),(6,117,134,37),(7,91,135,153),(8,115,136,35),(9,89,137,151),(10,113,138,33),(11,87,139,149),(12,111,140,31),(13,85,121,147),(14,109,122,29),(15,83,123,145),(16,107,124,27),(17,81,125,143),(18,105,126,25),(19,99,127,141),(20,103,128,23),(22,45,102,76),(24,43,104,74),(26,41,106,72),(28,59,108,70),(30,57,110,68),(32,55,112,66),(34,53,114,64),(36,51,116,62),(38,49,118,80),(40,47,120,78),(42,100,73,142),(44,98,75,160),(46,96,77,158),(48,94,79,156),(50,92,61,154),(52,90,63,152),(54,88,65,150),(56,86,67,148),(58,84,69,146),(60,82,71,144)], [(2,54),(3,19),(4,52),(5,17),(6,50),(7,15),(8,48),(9,13),(10,46),(12,44),(14,42),(16,60),(18,58),(20,56),(21,103),(22,87),(23,101),(24,85),(25,119),(26,83),(27,117),(28,81),(29,115),(30,99),(31,113),(32,97),(33,111),(34,95),(35,109),(36,93),(37,107),(38,91),(39,105),(40,89),(41,49),(43,47),(51,59),(53,57),(61,134),(62,70),(63,132),(64,68),(65,130),(67,128),(69,126),(71,124),(72,80),(73,122),(74,78),(75,140),(77,138),(79,136),(82,154),(84,152),(86,150),(88,148),(90,146),(92,144),(94,142),(96,160),(98,158),(100,156),(102,149),(104,147),(106,145),(108,143),(110,141),(112,159),(114,157),(116,155),(118,153),(120,151),(121,137),(123,135),(125,133),(127,131)]])
62 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4F | 4G | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 20 | 20 | 4 | ··· | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | - | + | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | Q8 | D5 | C4○D4 | D10 | C5⋊D4 | C4○D20 | D4×D5 | Q8×D5 | Q8⋊2D5 |
kernel | (C2×C20).289D4 | C10.10C42 | C2×C10.D4 | C2×D10⋊C4 | C10×C4⋊C4 | C2×Dic5 | C2×C20 | C22×D5 | C2×C4⋊C4 | C2×C10 | C22×C4 | C2×C4 | C22 | C22 | C22 | C22 |
# reps | 1 | 1 | 2 | 3 | 1 | 4 | 2 | 2 | 2 | 6 | 6 | 8 | 16 | 4 | 2 | 2 |
Matrix representation of (C2×C20).289D4 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
21 | 11 | 0 | 0 | 0 | 0 |
12 | 20 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 8 |
0 | 0 | 0 | 0 | 31 | 32 |
40 | 16 | 0 | 0 | 0 | 0 |
5 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 20 | 0 | 0 |
0 | 0 | 35 | 23 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 10 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 8 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[21,12,0,0,0,0,11,20,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,9,31,0,0,0,0,8,32],[40,5,0,0,0,0,16,1,0,0,0,0,0,0,18,35,0,0,0,0,20,23,0,0,0,0,0,0,1,0,0,0,0,0,10,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,6,40,0,0,0,0,0,0,1,8,0,0,0,0,0,40] >;
(C2×C20).289D4 in GAP, Magma, Sage, TeX
(C_2\times C_{20})._{289}D_4
% in TeX
G:=Group("(C2xC20).289D4");
// GroupNames label
G:=SmallGroup(320,619);
// by ID
G=gap.SmallGroup(320,619);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,232,254,387,268,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^-1,d*b*d=a*b^9,d*c*d=a*b^10*c^-1>;
// generators/relations