Copied to
clipboard

G = C2×D10⋊Q8order 320 = 26·5

Direct product of C2 and D10⋊Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D10⋊Q8, C4⋊C439D10, D101(C2×Q8), (C22×D5)⋊4Q8, C102(C22⋊Q8), C22.33(Q8×D5), (C2×C10).52C24, Dic5.82(C2×D4), C10.44(C22×D4), C22.134(D4×D5), C10.24(C22×Q8), (C2×C20).580C23, (C2×Dic5).246D4, (C22×Dic10)⋊7C2, (C22×C4).178D10, C22.86(C23×D5), (C2×Dic10)⋊50C22, C22.77(C4○D20), C10.D461C22, C23.329(C22×D5), D10⋊C4.92C22, (C22×C10).401C23, (C22×C20).434C22, (C2×Dic5).200C23, (C22×D5).168C23, (C23×D5).113C22, (C22×Dic5).81C22, C2.7(C2×Q8×D5), C2.17(C2×D4×D5), (C2×C4⋊C4)⋊17D5, C52(C2×C22⋊Q8), (C10×C4⋊C4)⋊14C2, (C5×C4⋊C4)⋊47C22, C10.21(C2×C4○D4), C2.23(C2×C4○D20), (C2×C10).93(C2×Q8), (D5×C22×C4).26C2, (C2×C10).390(C2×D4), (C2×C4×D5).371C22, (C2×C10.D4)⋊44C2, (C2×C4).142(C22×D5), (C2×D10⋊C4).20C2, (C2×C10).107(C4○D4), SmallGroup(320,1180)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×D10⋊Q8
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C2×D10⋊Q8
C5C2×C10 — C2×D10⋊Q8
C1C23C2×C4⋊C4

Generators and relations for C2×D10⋊Q8
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe-1=b-1, dcd-1=b3c, ece-1=b8c, ede-1=d-1 >

Subgroups: 1134 in 322 conjugacy classes, 127 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C22⋊Q8, C10.D4, D10⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×C20, C23×D5, D10⋊Q8, C2×C10.D4, C2×D10⋊C4, C10×C4⋊C4, C22×Dic10, D5×C22×C4, C2×D10⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, C24, D10, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C22×D5, C2×C22⋊Q8, C4○D20, D4×D5, Q8×D5, C23×D5, D10⋊Q8, C2×C4○D20, C2×D4×D5, C2×Q8×D5, C2×D10⋊Q8

Smallest permutation representation of C2×D10⋊Q8
On 160 points
Generators in S160
(1 110)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 109)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 81)(18 82)(19 83)(20 84)(21 91)(22 92)(23 93)(24 94)(25 95)(26 96)(27 97)(28 98)(29 99)(30 100)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 21)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 151)(12 160)(13 159)(14 158)(15 157)(16 156)(17 155)(18 154)(19 153)(20 152)(31 45)(32 44)(33 43)(34 42)(35 41)(36 50)(37 49)(38 48)(39 47)(40 46)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)(71 85)(72 84)(73 83)(74 82)(75 81)(76 90)(77 89)(78 88)(79 87)(80 86)(91 110)(92 109)(93 108)(94 107)(95 106)(96 105)(97 104)(98 103)(99 102)(100 101)(111 125)(112 124)(113 123)(114 122)(115 121)(116 130)(117 129)(118 128)(119 127)(120 126)(131 150)(132 149)(133 148)(134 147)(135 146)(136 145)(137 144)(138 143)(139 142)(140 141)
(1 45 27 32)(2 44 28 31)(3 43 29 40)(4 42 30 39)(5 41 21 38)(6 50 22 37)(7 49 23 36)(8 48 24 35)(9 47 25 34)(10 46 26 33)(11 145 152 132)(12 144 153 131)(13 143 154 140)(14 142 155 139)(15 141 156 138)(16 150 157 137)(17 149 158 136)(18 148 159 135)(19 147 160 134)(20 146 151 133)(51 86 64 73)(52 85 65 72)(53 84 66 71)(54 83 67 80)(55 82 68 79)(56 81 69 78)(57 90 70 77)(58 89 61 76)(59 88 62 75)(60 87 63 74)(91 118 104 121)(92 117 105 130)(93 116 106 129)(94 115 107 128)(95 114 108 127)(96 113 109 126)(97 112 110 125)(98 111 101 124)(99 120 102 123)(100 119 103 122)
(1 65 27 52)(2 64 28 51)(3 63 29 60)(4 62 30 59)(5 61 21 58)(6 70 22 57)(7 69 23 56)(8 68 24 55)(9 67 25 54)(10 66 26 53)(11 112 152 125)(12 111 153 124)(13 120 154 123)(14 119 155 122)(15 118 156 121)(16 117 157 130)(17 116 158 129)(18 115 159 128)(19 114 160 127)(20 113 151 126)(31 73 44 86)(32 72 45 85)(33 71 46 84)(34 80 47 83)(35 79 48 82)(36 78 49 81)(37 77 50 90)(38 76 41 89)(39 75 42 88)(40 74 43 87)(91 138 104 141)(92 137 105 150)(93 136 106 149)(94 135 107 148)(95 134 108 147)(96 133 109 146)(97 132 110 145)(98 131 101 144)(99 140 102 143)(100 139 103 142)

G:=sub<Sym(160)| (1,110)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,81)(18,82)(19,83)(20,84)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,99)(30,100)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,21)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,151)(12,160)(13,159)(14,158)(15,157)(16,156)(17,155)(18,154)(19,153)(20,152)(31,45)(32,44)(33,43)(34,42)(35,41)(36,50)(37,49)(38,48)(39,47)(40,46)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(71,85)(72,84)(73,83)(74,82)(75,81)(76,90)(77,89)(78,88)(79,87)(80,86)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101)(111,125)(112,124)(113,123)(114,122)(115,121)(116,130)(117,129)(118,128)(119,127)(120,126)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141), (1,45,27,32)(2,44,28,31)(3,43,29,40)(4,42,30,39)(5,41,21,38)(6,50,22,37)(7,49,23,36)(8,48,24,35)(9,47,25,34)(10,46,26,33)(11,145,152,132)(12,144,153,131)(13,143,154,140)(14,142,155,139)(15,141,156,138)(16,150,157,137)(17,149,158,136)(18,148,159,135)(19,147,160,134)(20,146,151,133)(51,86,64,73)(52,85,65,72)(53,84,66,71)(54,83,67,80)(55,82,68,79)(56,81,69,78)(57,90,70,77)(58,89,61,76)(59,88,62,75)(60,87,63,74)(91,118,104,121)(92,117,105,130)(93,116,106,129)(94,115,107,128)(95,114,108,127)(96,113,109,126)(97,112,110,125)(98,111,101,124)(99,120,102,123)(100,119,103,122), (1,65,27,52)(2,64,28,51)(3,63,29,60)(4,62,30,59)(5,61,21,58)(6,70,22,57)(7,69,23,56)(8,68,24,55)(9,67,25,54)(10,66,26,53)(11,112,152,125)(12,111,153,124)(13,120,154,123)(14,119,155,122)(15,118,156,121)(16,117,157,130)(17,116,158,129)(18,115,159,128)(19,114,160,127)(20,113,151,126)(31,73,44,86)(32,72,45,85)(33,71,46,84)(34,80,47,83)(35,79,48,82)(36,78,49,81)(37,77,50,90)(38,76,41,89)(39,75,42,88)(40,74,43,87)(91,138,104,141)(92,137,105,150)(93,136,106,149)(94,135,107,148)(95,134,108,147)(96,133,109,146)(97,132,110,145)(98,131,101,144)(99,140,102,143)(100,139,103,142)>;

G:=Group( (1,110)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,81)(18,82)(19,83)(20,84)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,99)(30,100)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,21)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,151)(12,160)(13,159)(14,158)(15,157)(16,156)(17,155)(18,154)(19,153)(20,152)(31,45)(32,44)(33,43)(34,42)(35,41)(36,50)(37,49)(38,48)(39,47)(40,46)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(71,85)(72,84)(73,83)(74,82)(75,81)(76,90)(77,89)(78,88)(79,87)(80,86)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101)(111,125)(112,124)(113,123)(114,122)(115,121)(116,130)(117,129)(118,128)(119,127)(120,126)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141), (1,45,27,32)(2,44,28,31)(3,43,29,40)(4,42,30,39)(5,41,21,38)(6,50,22,37)(7,49,23,36)(8,48,24,35)(9,47,25,34)(10,46,26,33)(11,145,152,132)(12,144,153,131)(13,143,154,140)(14,142,155,139)(15,141,156,138)(16,150,157,137)(17,149,158,136)(18,148,159,135)(19,147,160,134)(20,146,151,133)(51,86,64,73)(52,85,65,72)(53,84,66,71)(54,83,67,80)(55,82,68,79)(56,81,69,78)(57,90,70,77)(58,89,61,76)(59,88,62,75)(60,87,63,74)(91,118,104,121)(92,117,105,130)(93,116,106,129)(94,115,107,128)(95,114,108,127)(96,113,109,126)(97,112,110,125)(98,111,101,124)(99,120,102,123)(100,119,103,122), (1,65,27,52)(2,64,28,51)(3,63,29,60)(4,62,30,59)(5,61,21,58)(6,70,22,57)(7,69,23,56)(8,68,24,55)(9,67,25,54)(10,66,26,53)(11,112,152,125)(12,111,153,124)(13,120,154,123)(14,119,155,122)(15,118,156,121)(16,117,157,130)(17,116,158,129)(18,115,159,128)(19,114,160,127)(20,113,151,126)(31,73,44,86)(32,72,45,85)(33,71,46,84)(34,80,47,83)(35,79,48,82)(36,78,49,81)(37,77,50,90)(38,76,41,89)(39,75,42,88)(40,74,43,87)(91,138,104,141)(92,137,105,150)(93,136,106,149)(94,135,107,148)(95,134,108,147)(96,133,109,146)(97,132,110,145)(98,131,101,144)(99,140,102,143)(100,139,103,142) );

G=PermutationGroup([[(1,110),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,109),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,81),(18,82),(19,83),(20,84),(21,91),(22,92),(23,93),(24,94),(25,95),(26,96),(27,97),(28,98),(29,99),(30,100),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,21),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,151),(12,160),(13,159),(14,158),(15,157),(16,156),(17,155),(18,154),(19,153),(20,152),(31,45),(32,44),(33,43),(34,42),(35,41),(36,50),(37,49),(38,48),(39,47),(40,46),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61),(71,85),(72,84),(73,83),(74,82),(75,81),(76,90),(77,89),(78,88),(79,87),(80,86),(91,110),(92,109),(93,108),(94,107),(95,106),(96,105),(97,104),(98,103),(99,102),(100,101),(111,125),(112,124),(113,123),(114,122),(115,121),(116,130),(117,129),(118,128),(119,127),(120,126),(131,150),(132,149),(133,148),(134,147),(135,146),(136,145),(137,144),(138,143),(139,142),(140,141)], [(1,45,27,32),(2,44,28,31),(3,43,29,40),(4,42,30,39),(5,41,21,38),(6,50,22,37),(7,49,23,36),(8,48,24,35),(9,47,25,34),(10,46,26,33),(11,145,152,132),(12,144,153,131),(13,143,154,140),(14,142,155,139),(15,141,156,138),(16,150,157,137),(17,149,158,136),(18,148,159,135),(19,147,160,134),(20,146,151,133),(51,86,64,73),(52,85,65,72),(53,84,66,71),(54,83,67,80),(55,82,68,79),(56,81,69,78),(57,90,70,77),(58,89,61,76),(59,88,62,75),(60,87,63,74),(91,118,104,121),(92,117,105,130),(93,116,106,129),(94,115,107,128),(95,114,108,127),(96,113,109,126),(97,112,110,125),(98,111,101,124),(99,120,102,123),(100,119,103,122)], [(1,65,27,52),(2,64,28,51),(3,63,29,60),(4,62,30,59),(5,61,21,58),(6,70,22,57),(7,69,23,56),(8,68,24,55),(9,67,25,54),(10,66,26,53),(11,112,152,125),(12,111,153,124),(13,120,154,123),(14,119,155,122),(15,118,156,121),(16,117,157,130),(17,116,158,129),(18,115,159,128),(19,114,160,127),(20,113,151,126),(31,73,44,86),(32,72,45,85),(33,71,46,84),(34,80,47,83),(35,79,48,82),(36,78,49,81),(37,77,50,90),(38,76,41,89),(39,75,42,88),(40,74,43,87),(91,138,104,141),(92,137,105,150),(93,136,106,149),(94,135,107,148),(95,134,108,147),(96,133,109,146),(97,132,110,145),(98,131,101,144),(99,140,102,143),(100,139,103,142)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10N20A···20X
order12···2222244444444444444445510···1020···20
size11···110101010222244441010101020202020222···24···4

68 irreducible representations

dim1111111222222244
type++++++++-++++-
imageC1C2C2C2C2C2C2D4Q8D5C4○D4D10D10C4○D20D4×D5Q8×D5
kernelC2×D10⋊Q8D10⋊Q8C2×C10.D4C2×D10⋊C4C10×C4⋊C4C22×Dic10D5×C22×C4C2×Dic5C22×D5C2×C4⋊C4C2×C10C4⋊C4C22×C4C22C22C22
# reps18221114424861644

Matrix representation of C2×D10⋊Q8 in GL6(𝔽41)

4000000
0400000
001000
000100
0000400
0000040
,
170000
34340000
0040000
0004000
0000400
0000040
,
170000
0400000
0040000
001100
000010
0000040
,
2410000
38170000
0025900
00171600
0000040
0000400
,
900000
19320000
009000
00323200
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,34,0,0,0,0,7,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,7,40,0,0,0,0,0,0,40,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[24,38,0,0,0,0,1,17,0,0,0,0,0,0,25,17,0,0,0,0,9,16,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[9,19,0,0,0,0,0,32,0,0,0,0,0,0,9,32,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2×D10⋊Q8 in GAP, Magma, Sage, TeX

C_2\times D_{10}\rtimes Q_8
% in TeX

G:=Group("C2xD10:Q8");
// GroupNames label

G:=SmallGroup(320,1180);
// by ID

G=gap.SmallGroup(320,1180);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,1571,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=b^3*c,e*c*e^-1=b^8*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽