direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic5.14D4, C23⋊3Dic10, C24.51D10, (C22×C10)⋊4Q8, C10⋊1(C22⋊Q8), C10.5(C22×Q8), (C2×C10).25C24, C4⋊Dic5⋊49C22, C22⋊C4.84D10, Dic5.81(C2×D4), C22⋊2(C2×Dic10), C10.32(C22×D4), C22.122(D4×D5), (C2×C20).125C23, (C2×Dic5).245D4, (C22×Dic10)⋊5C2, (C22×C4).167D10, (C23×Dic5).8C2, C2.7(C22×Dic10), C22.67(C23×D5), (C2×Dic10)⋊47C22, C10.D4⋊46C22, (C22×C20).70C22, (C23×C10).51C22, C23.318(C22×D5), C23.D5.83C22, C22.64(D4⋊2D5), (C22×C10).117C23, (C2×Dic5).185C23, (C22×Dic5).225C22, C2.7(C2×D4×D5), C5⋊1(C2×C22⋊Q8), (C2×C10)⋊4(C2×Q8), (C2×C4⋊Dic5)⋊17C2, C10.66(C2×C4○D4), C2.7(C2×D4⋊2D5), (C2×C10).378(C2×D4), (C2×C22⋊C4).16D5, (C2×C10.D4)⋊21C2, (C10×C22⋊C4).17C2, (C2×C4).132(C22×D5), (C2×C23.D5).20C2, (C2×C10).166(C4○D4), (C5×C22⋊C4).96C22, SmallGroup(320,1153)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Dic5.14D4
G = < a,b,c,d,e | a2=b10=d4=e2=1, c2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=b5c, ce=ec, ede=b5d-1 >
Subgroups: 974 in 322 conjugacy classes, 135 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C23, C10, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C2×C22⋊Q8, C10.D4, C4⋊Dic5, C23.D5, C5×C22⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×Dic5, C22×Dic5, C22×C20, C23×C10, Dic5.14D4, C2×C10.D4, C2×C4⋊Dic5, C2×C23.D5, C10×C22⋊C4, C22×Dic10, C23×Dic5, C2×Dic5.14D4
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, C24, D10, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, Dic10, C22×D5, C2×C22⋊Q8, C2×Dic10, D4×D5, D4⋊2D5, C23×D5, Dic5.14D4, C22×Dic10, C2×D4×D5, C2×D4⋊2D5, C2×Dic5.14D4
(1 67)(2 68)(3 69)(4 70)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 111)(19 112)(20 113)(21 60)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)(30 59)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 81)(38 82)(39 83)(40 84)(41 80)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 78)(50 79)(91 145)(92 146)(93 147)(94 148)(95 149)(96 150)(97 141)(98 142)(99 143)(100 144)(101 137)(102 138)(103 139)(104 140)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(121 157)(122 158)(123 159)(124 160)(125 151)(126 152)(127 153)(128 154)(129 155)(130 156)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 103 6 108)(2 102 7 107)(3 101 8 106)(4 110 9 105)(5 109 10 104)(11 76 16 71)(12 75 17 80)(13 74 18 79)(14 73 19 78)(15 72 20 77)(21 95 26 100)(22 94 27 99)(23 93 28 98)(24 92 29 97)(25 91 30 96)(31 128 36 123)(32 127 37 122)(33 126 38 121)(34 125 39 130)(35 124 40 129)(41 115 46 120)(42 114 47 119)(43 113 48 118)(44 112 49 117)(45 111 50 116)(51 148 56 143)(52 147 57 142)(53 146 58 141)(54 145 59 150)(55 144 60 149)(61 135 66 140)(62 134 67 139)(63 133 68 138)(64 132 69 137)(65 131 70 136)(81 158 86 153)(82 157 87 152)(83 156 88 151)(84 155 89 160)(85 154 90 159)
(1 31 22 47)(2 32 23 48)(3 33 24 49)(4 34 25 50)(5 35 26 41)(6 36 27 42)(7 37 28 43)(8 38 29 44)(9 39 30 45)(10 40 21 46)(11 139 159 148)(12 140 160 149)(13 131 151 150)(14 132 152 141)(15 133 153 142)(16 134 154 143)(17 135 155 144)(18 136 156 145)(19 137 157 146)(20 138 158 147)(51 76 67 85)(52 77 68 86)(53 78 69 87)(54 79 70 88)(55 80 61 89)(56 71 62 90)(57 72 63 81)(58 73 64 82)(59 74 65 83)(60 75 66 84)(91 111 110 130)(92 112 101 121)(93 113 102 122)(94 114 103 123)(95 115 104 124)(96 116 105 125)(97 117 106 126)(98 118 107 127)(99 119 108 128)(100 120 109 129)
(11 154)(12 155)(13 156)(14 157)(15 158)(16 159)(17 160)(18 151)(19 152)(20 153)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)(40 41)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 81)(78 82)(79 83)(80 84)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 121)(118 122)(119 123)(120 124)
G:=sub<Sym(160)| (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,60)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,81)(38,82)(39,83)(40,84)(41,80)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,141)(98,142)(99,143)(100,144)(101,137)(102,138)(103,139)(104,140)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(121,157)(122,158)(123,159)(124,160)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,103,6,108)(2,102,7,107)(3,101,8,106)(4,110,9,105)(5,109,10,104)(11,76,16,71)(12,75,17,80)(13,74,18,79)(14,73,19,78)(15,72,20,77)(21,95,26,100)(22,94,27,99)(23,93,28,98)(24,92,29,97)(25,91,30,96)(31,128,36,123)(32,127,37,122)(33,126,38,121)(34,125,39,130)(35,124,40,129)(41,115,46,120)(42,114,47,119)(43,113,48,118)(44,112,49,117)(45,111,50,116)(51,148,56,143)(52,147,57,142)(53,146,58,141)(54,145,59,150)(55,144,60,149)(61,135,66,140)(62,134,67,139)(63,133,68,138)(64,132,69,137)(65,131,70,136)(81,158,86,153)(82,157,87,152)(83,156,88,151)(84,155,89,160)(85,154,90,159), (1,31,22,47)(2,32,23,48)(3,33,24,49)(4,34,25,50)(5,35,26,41)(6,36,27,42)(7,37,28,43)(8,38,29,44)(9,39,30,45)(10,40,21,46)(11,139,159,148)(12,140,160,149)(13,131,151,150)(14,132,152,141)(15,133,153,142)(16,134,154,143)(17,135,155,144)(18,136,156,145)(19,137,157,146)(20,138,158,147)(51,76,67,85)(52,77,68,86)(53,78,69,87)(54,79,70,88)(55,80,61,89)(56,71,62,90)(57,72,63,81)(58,73,64,82)(59,74,65,83)(60,75,66,84)(91,111,110,130)(92,112,101,121)(93,113,102,122)(94,114,103,123)(95,115,104,124)(96,116,105,125)(97,117,106,126)(98,118,107,127)(99,119,108,128)(100,120,109,129), (11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,160)(18,151)(19,152)(20,153)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,41)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)>;
G:=Group( (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,60)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,81)(38,82)(39,83)(40,84)(41,80)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,141)(98,142)(99,143)(100,144)(101,137)(102,138)(103,139)(104,140)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(121,157)(122,158)(123,159)(124,160)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,103,6,108)(2,102,7,107)(3,101,8,106)(4,110,9,105)(5,109,10,104)(11,76,16,71)(12,75,17,80)(13,74,18,79)(14,73,19,78)(15,72,20,77)(21,95,26,100)(22,94,27,99)(23,93,28,98)(24,92,29,97)(25,91,30,96)(31,128,36,123)(32,127,37,122)(33,126,38,121)(34,125,39,130)(35,124,40,129)(41,115,46,120)(42,114,47,119)(43,113,48,118)(44,112,49,117)(45,111,50,116)(51,148,56,143)(52,147,57,142)(53,146,58,141)(54,145,59,150)(55,144,60,149)(61,135,66,140)(62,134,67,139)(63,133,68,138)(64,132,69,137)(65,131,70,136)(81,158,86,153)(82,157,87,152)(83,156,88,151)(84,155,89,160)(85,154,90,159), (1,31,22,47)(2,32,23,48)(3,33,24,49)(4,34,25,50)(5,35,26,41)(6,36,27,42)(7,37,28,43)(8,38,29,44)(9,39,30,45)(10,40,21,46)(11,139,159,148)(12,140,160,149)(13,131,151,150)(14,132,152,141)(15,133,153,142)(16,134,154,143)(17,135,155,144)(18,136,156,145)(19,137,157,146)(20,138,158,147)(51,76,67,85)(52,77,68,86)(53,78,69,87)(54,79,70,88)(55,80,61,89)(56,71,62,90)(57,72,63,81)(58,73,64,82)(59,74,65,83)(60,75,66,84)(91,111,110,130)(92,112,101,121)(93,113,102,122)(94,114,103,123)(95,115,104,124)(96,116,105,125)(97,117,106,126)(98,118,107,127)(99,119,108,128)(100,120,109,129), (11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,160)(18,151)(19,152)(20,153)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,41)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124) );
G=PermutationGroup([[(1,67),(2,68),(3,69),(4,70),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,111),(19,112),(20,113),(21,60),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58),(30,59),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,81),(38,82),(39,83),(40,84),(41,80),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,78),(50,79),(91,145),(92,146),(93,147),(94,148),(95,149),(96,150),(97,141),(98,142),(99,143),(100,144),(101,137),(102,138),(103,139),(104,140),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(121,157),(122,158),(123,159),(124,160),(125,151),(126,152),(127,153),(128,154),(129,155),(130,156)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,103,6,108),(2,102,7,107),(3,101,8,106),(4,110,9,105),(5,109,10,104),(11,76,16,71),(12,75,17,80),(13,74,18,79),(14,73,19,78),(15,72,20,77),(21,95,26,100),(22,94,27,99),(23,93,28,98),(24,92,29,97),(25,91,30,96),(31,128,36,123),(32,127,37,122),(33,126,38,121),(34,125,39,130),(35,124,40,129),(41,115,46,120),(42,114,47,119),(43,113,48,118),(44,112,49,117),(45,111,50,116),(51,148,56,143),(52,147,57,142),(53,146,58,141),(54,145,59,150),(55,144,60,149),(61,135,66,140),(62,134,67,139),(63,133,68,138),(64,132,69,137),(65,131,70,136),(81,158,86,153),(82,157,87,152),(83,156,88,151),(84,155,89,160),(85,154,90,159)], [(1,31,22,47),(2,32,23,48),(3,33,24,49),(4,34,25,50),(5,35,26,41),(6,36,27,42),(7,37,28,43),(8,38,29,44),(9,39,30,45),(10,40,21,46),(11,139,159,148),(12,140,160,149),(13,131,151,150),(14,132,152,141),(15,133,153,142),(16,134,154,143),(17,135,155,144),(18,136,156,145),(19,137,157,146),(20,138,158,147),(51,76,67,85),(52,77,68,86),(53,78,69,87),(54,79,70,88),(55,80,61,89),(56,71,62,90),(57,72,63,81),(58,73,64,82),(59,74,65,83),(60,75,66,84),(91,111,110,130),(92,112,101,121),(93,113,102,122),(94,114,103,123),(95,115,104,124),(96,116,105,125),(97,117,106,126),(98,118,107,127),(99,119,108,128),(100,120,109,129)], [(11,154),(12,155),(13,156),(14,157),(15,158),(16,159),(17,160),(18,151),(19,152),(20,153),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50),(40,41),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,81),(78,82),(79,83),(80,84),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,121),(118,122),(119,123),(120,124)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | D5 | C4○D4 | D10 | D10 | D10 | Dic10 | D4×D5 | D4⋊2D5 |
kernel | C2×Dic5.14D4 | Dic5.14D4 | C2×C10.D4 | C2×C4⋊Dic5 | C2×C23.D5 | C10×C22⋊C4 | C22×Dic10 | C23×Dic5 | C2×Dic5 | C22×C10 | C2×C22⋊C4 | C2×C10 | C22⋊C4 | C22×C4 | C24 | C23 | C22 | C22 |
# reps | 1 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 4 | 8 | 4 | 2 | 16 | 4 | 4 |
Matrix representation of C2×Dic5.14D4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
34 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 5 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
2 | 35 | 0 | 0 | 0 | 0 |
21 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 20 | 3 | 0 | 0 |
0 | 0 | 3 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 9 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[34,1,0,0,0,0,40,0,0,0,0,0,0,0,1,5,0,0,0,0,1,6,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[2,21,0,0,0,0,35,39,0,0,0,0,0,0,20,3,0,0,0,0,3,21,0,0,0,0,0,0,32,0,0,0,0,0,0,9],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,39,4,0,0,0,0,9,2,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;
C2×Dic5.14D4 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_5._{14}D_4
% in TeX
G:=Group("C2xDic5.14D4");
// GroupNames label
G:=SmallGroup(320,1153);
// by ID
G=gap.SmallGroup(320,1153);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,675,297,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^10=d^4=e^2=1,c^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^5*c,c*e=e*c,e*d*e=b^5*d^-1>;
// generators/relations