Copied to
clipboard

G = C2×D10.13D4order 320 = 26·5

Direct product of C2 and D10.13D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D10.13D4, C4⋊C437D10, D10.71(C2×D4), (C2×C10).49C24, (C22×D20).9C2, C10.42(C22×D4), C22.132(D4×D5), (C2×C20).616C23, (C22×D5).132D4, (C22×C4).318D10, D10⋊C464C22, C22.83(C23×D5), (C2×D20).213C22, C22.76(C4○D20), C10.D451C22, C103(C22.D4), (C22×D5).12C23, C23.327(C22×D5), (C22×C10).398C23, (C22×C20).359C22, C22.35(Q82D5), (C2×Dic5).197C23, (C23×D5).111C22, (C22×Dic5).235C22, C2.14(C2×D4×D5), (C2×C4⋊C4)⋊14D5, (C10×C4⋊C4)⋊11C2, (D5×C22×C4)⋊20C2, (C2×C4×D5)⋊68C22, (C5×C4⋊C4)⋊45C22, C2.21(C2×C4○D20), C10.19(C2×C4○D4), C2.6(C2×Q82D5), C53(C2×C22.D4), (C2×C10).388(C2×D4), (C2×D10⋊C4)⋊33C2, (C2×C10.D4)⋊23C2, (C2×C4).140(C22×D5), (C2×C10).106(C4○D4), SmallGroup(320,1177)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×D10.13D4
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C2×D10.13D4
C5C2×C10 — C2×D10.13D4
C1C23C2×C4⋊C4

Generators and relations for C2×D10.13D4
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=ece-1=b5c, ede-1=d-1 >

Subgroups: 1374 in 342 conjugacy classes, 119 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C22.D4, C10.D4, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, C22×Dic5, C22×C20, C23×D5, D10.13D4, C2×C10.D4, C2×D10⋊C4, C10×C4⋊C4, D5×C22×C4, C22×D20, C2×D10.13D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22.D4, C22×D4, C2×C4○D4, C22×D5, C2×C22.D4, C4○D20, D4×D5, Q82D5, C23×D5, D10.13D4, C2×C4○D20, C2×D4×D5, C2×Q82D5, C2×D10.13D4

Smallest permutation representation of C2×D10.13D4
On 160 points
Generators in S160
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 101)(8 102)(9 103)(10 104)(11 78)(12 79)(13 80)(14 71)(15 72)(16 73)(17 74)(18 75)(19 76)(20 77)(21 94)(22 95)(23 96)(24 97)(25 98)(26 99)(27 100)(28 91)(29 92)(30 93)(31 128)(32 129)(33 130)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 111)(49 112)(50 113)(51 148)(52 149)(53 150)(54 141)(55 142)(56 143)(57 144)(58 145)(59 146)(60 147)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 131)(69 132)(70 133)(81 154)(82 155)(83 156)(84 157)(85 158)(86 159)(87 160)(88 151)(89 152)(90 153)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 84)(2 83)(3 82)(4 81)(5 90)(6 89)(7 88)(8 87)(9 86)(10 85)(11 97)(12 96)(13 95)(14 94)(15 93)(16 92)(17 91)(18 100)(19 99)(20 98)(21 71)(22 80)(23 79)(24 78)(25 77)(26 76)(27 75)(28 74)(29 73)(30 72)(31 66)(32 65)(33 64)(34 63)(35 62)(36 61)(37 70)(38 69)(39 68)(40 67)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 60)(48 59)(49 58)(50 57)(101 151)(102 160)(103 159)(104 158)(105 157)(106 156)(107 155)(108 154)(109 153)(110 152)(111 146)(112 145)(113 144)(114 143)(115 142)(116 141)(117 150)(118 149)(119 148)(120 147)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 140)(128 139)(129 138)(130 137)
(1 125 25 118)(2 126 26 119)(3 127 27 120)(4 128 28 111)(5 129 29 112)(6 130 30 113)(7 121 21 114)(8 122 22 115)(9 123 23 116)(10 124 24 117)(11 58 158 65)(12 59 159 66)(13 60 160 67)(14 51 151 68)(15 52 152 69)(16 53 153 70)(17 54 154 61)(18 55 155 62)(19 56 156 63)(20 57 157 64)(31 91 48 108)(32 92 49 109)(33 93 50 110)(34 94 41 101)(35 95 42 102)(36 96 43 103)(37 97 44 104)(38 98 45 105)(39 99 46 106)(40 100 47 107)(71 148 88 131)(72 149 89 132)(73 150 90 133)(74 141 81 134)(75 142 82 135)(76 143 83 136)(77 144 84 137)(78 145 85 138)(79 146 86 139)(80 147 87 140)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 159 26 154)(22 160 27 155)(23 151 28 156)(24 152 29 157)(25 153 30 158)(31 136 36 131)(32 137 37 132)(33 138 38 133)(34 139 39 134)(35 140 40 135)(41 146 46 141)(42 147 47 142)(43 148 48 143)(44 149 49 144)(45 150 50 145)(51 111 56 116)(52 112 57 117)(53 113 58 118)(54 114 59 119)(55 115 60 120)(61 121 66 126)(62 122 67 127)(63 123 68 128)(64 124 69 129)(65 125 70 130)(71 108 76 103)(72 109 77 104)(73 110 78 105)(74 101 79 106)(75 102 80 107)(81 94 86 99)(82 95 87 100)(83 96 88 91)(84 97 89 92)(85 98 90 93)

G:=sub<Sym(160)| (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,78)(12,79)(13,80)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,94)(22,95)(23,96)(24,97)(25,98)(26,99)(27,100)(28,91)(29,92)(30,93)(31,128)(32,129)(33,130)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,111)(49,112)(50,113)(51,148)(52,149)(53,150)(54,141)(55,142)(56,143)(57,144)(58,145)(59,146)(60,147)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,131)(69,132)(70,133)(81,154)(82,155)(83,156)(84,157)(85,158)(86,159)(87,160)(88,151)(89,152)(90,153), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84)(2,83)(3,82)(4,81)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,97)(12,96)(13,95)(14,94)(15,93)(16,92)(17,91)(18,100)(19,99)(20,98)(21,71)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,70)(38,69)(39,68)(40,67)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,60)(48,59)(49,58)(50,57)(101,151)(102,160)(103,159)(104,158)(105,157)(106,156)(107,155)(108,154)(109,153)(110,152)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,150)(118,149)(119,148)(120,147)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,140)(128,139)(129,138)(130,137), (1,125,25,118)(2,126,26,119)(3,127,27,120)(4,128,28,111)(5,129,29,112)(6,130,30,113)(7,121,21,114)(8,122,22,115)(9,123,23,116)(10,124,24,117)(11,58,158,65)(12,59,159,66)(13,60,160,67)(14,51,151,68)(15,52,152,69)(16,53,153,70)(17,54,154,61)(18,55,155,62)(19,56,156,63)(20,57,157,64)(31,91,48,108)(32,92,49,109)(33,93,50,110)(34,94,41,101)(35,95,42,102)(36,96,43,103)(37,97,44,104)(38,98,45,105)(39,99,46,106)(40,100,47,107)(71,148,88,131)(72,149,89,132)(73,150,90,133)(74,141,81,134)(75,142,82,135)(76,143,83,136)(77,144,84,137)(78,145,85,138)(79,146,86,139)(80,147,87,140), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,159,26,154)(22,160,27,155)(23,151,28,156)(24,152,29,157)(25,153,30,158)(31,136,36,131)(32,137,37,132)(33,138,38,133)(34,139,39,134)(35,140,40,135)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120)(61,121,66,126)(62,122,67,127)(63,123,68,128)(64,124,69,129)(65,125,70,130)(71,108,76,103)(72,109,77,104)(73,110,78,105)(74,101,79,106)(75,102,80,107)(81,94,86,99)(82,95,87,100)(83,96,88,91)(84,97,89,92)(85,98,90,93)>;

G:=Group( (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,78)(12,79)(13,80)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,94)(22,95)(23,96)(24,97)(25,98)(26,99)(27,100)(28,91)(29,92)(30,93)(31,128)(32,129)(33,130)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,111)(49,112)(50,113)(51,148)(52,149)(53,150)(54,141)(55,142)(56,143)(57,144)(58,145)(59,146)(60,147)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,131)(69,132)(70,133)(81,154)(82,155)(83,156)(84,157)(85,158)(86,159)(87,160)(88,151)(89,152)(90,153), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84)(2,83)(3,82)(4,81)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,97)(12,96)(13,95)(14,94)(15,93)(16,92)(17,91)(18,100)(19,99)(20,98)(21,71)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,70)(38,69)(39,68)(40,67)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,60)(48,59)(49,58)(50,57)(101,151)(102,160)(103,159)(104,158)(105,157)(106,156)(107,155)(108,154)(109,153)(110,152)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,150)(118,149)(119,148)(120,147)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,140)(128,139)(129,138)(130,137), (1,125,25,118)(2,126,26,119)(3,127,27,120)(4,128,28,111)(5,129,29,112)(6,130,30,113)(7,121,21,114)(8,122,22,115)(9,123,23,116)(10,124,24,117)(11,58,158,65)(12,59,159,66)(13,60,160,67)(14,51,151,68)(15,52,152,69)(16,53,153,70)(17,54,154,61)(18,55,155,62)(19,56,156,63)(20,57,157,64)(31,91,48,108)(32,92,49,109)(33,93,50,110)(34,94,41,101)(35,95,42,102)(36,96,43,103)(37,97,44,104)(38,98,45,105)(39,99,46,106)(40,100,47,107)(71,148,88,131)(72,149,89,132)(73,150,90,133)(74,141,81,134)(75,142,82,135)(76,143,83,136)(77,144,84,137)(78,145,85,138)(79,146,86,139)(80,147,87,140), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,159,26,154)(22,160,27,155)(23,151,28,156)(24,152,29,157)(25,153,30,158)(31,136,36,131)(32,137,37,132)(33,138,38,133)(34,139,39,134)(35,140,40,135)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120)(61,121,66,126)(62,122,67,127)(63,123,68,128)(64,124,69,129)(65,125,70,130)(71,108,76,103)(72,109,77,104)(73,110,78,105)(74,101,79,106)(75,102,80,107)(81,94,86,99)(82,95,87,100)(83,96,88,91)(84,97,89,92)(85,98,90,93) );

G=PermutationGroup([[(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,101),(8,102),(9,103),(10,104),(11,78),(12,79),(13,80),(14,71),(15,72),(16,73),(17,74),(18,75),(19,76),(20,77),(21,94),(22,95),(23,96),(24,97),(25,98),(26,99),(27,100),(28,91),(29,92),(30,93),(31,128),(32,129),(33,130),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,111),(49,112),(50,113),(51,148),(52,149),(53,150),(54,141),(55,142),(56,143),(57,144),(58,145),(59,146),(60,147),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,131),(69,132),(70,133),(81,154),(82,155),(83,156),(84,157),(85,158),(86,159),(87,160),(88,151),(89,152),(90,153)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,84),(2,83),(3,82),(4,81),(5,90),(6,89),(7,88),(8,87),(9,86),(10,85),(11,97),(12,96),(13,95),(14,94),(15,93),(16,92),(17,91),(18,100),(19,99),(20,98),(21,71),(22,80),(23,79),(24,78),(25,77),(26,76),(27,75),(28,74),(29,73),(30,72),(31,66),(32,65),(33,64),(34,63),(35,62),(36,61),(37,70),(38,69),(39,68),(40,67),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,60),(48,59),(49,58),(50,57),(101,151),(102,160),(103,159),(104,158),(105,157),(106,156),(107,155),(108,154),(109,153),(110,152),(111,146),(112,145),(113,144),(114,143),(115,142),(116,141),(117,150),(118,149),(119,148),(120,147),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,140),(128,139),(129,138),(130,137)], [(1,125,25,118),(2,126,26,119),(3,127,27,120),(4,128,28,111),(5,129,29,112),(6,130,30,113),(7,121,21,114),(8,122,22,115),(9,123,23,116),(10,124,24,117),(11,58,158,65),(12,59,159,66),(13,60,160,67),(14,51,151,68),(15,52,152,69),(16,53,153,70),(17,54,154,61),(18,55,155,62),(19,56,156,63),(20,57,157,64),(31,91,48,108),(32,92,49,109),(33,93,50,110),(34,94,41,101),(35,95,42,102),(36,96,43,103),(37,97,44,104),(38,98,45,105),(39,99,46,106),(40,100,47,107),(71,148,88,131),(72,149,89,132),(73,150,90,133),(74,141,81,134),(75,142,82,135),(76,143,83,136),(77,144,84,137),(78,145,85,138),(79,146,86,139),(80,147,87,140)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,159,26,154),(22,160,27,155),(23,151,28,156),(24,152,29,157),(25,153,30,158),(31,136,36,131),(32,137,37,132),(33,138,38,133),(34,139,39,134),(35,140,40,135),(41,146,46,141),(42,147,47,142),(43,148,48,143),(44,149,49,144),(45,150,50,145),(51,111,56,116),(52,112,57,117),(53,113,58,118),(54,114,59,119),(55,115,60,120),(61,121,66,126),(62,122,67,127),(63,123,68,128),(64,124,69,129),(65,125,70,130),(71,108,76,103),(72,109,77,104),(73,110,78,105),(74,101,79,106),(75,102,80,107),(81,94,86,99),(82,95,87,100),(83,96,88,91),(84,97,89,92),(85,98,90,93)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E4F4G4H4I4J4K4L4M4N5A5B10A···10N20A···20X
order12···2222222444444444444445510···1020···20
size11···110101010202022224444101010102020222···24···4

68 irreducible representations

dim111111122222244
type+++++++++++++
imageC1C2C2C2C2C2C2D4D5C4○D4D10D10C4○D20D4×D5Q82D5
kernelC2×D10.13D4D10.13D4C2×C10.D4C2×D10⋊C4C10×C4⋊C4D5×C22×C4C22×D20C22×D5C2×C4⋊C4C2×C10C4⋊C4C22×C4C22C22C22
# reps1813111428861644

Matrix representation of C2×D10.13D4 in GL5(𝔽41)

400000
040000
004000
000400
000040
,
10000
034700
034100
000400
000040
,
400000
0113200
0273000
0001010
0002731
,
400000
017100
0402400
000320
000189
,
400000
030900
0321100
0003131
000610

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,34,34,0,0,0,7,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,11,27,0,0,0,32,30,0,0,0,0,0,10,27,0,0,0,10,31],[40,0,0,0,0,0,17,40,0,0,0,1,24,0,0,0,0,0,32,18,0,0,0,0,9],[40,0,0,0,0,0,30,32,0,0,0,9,11,0,0,0,0,0,31,6,0,0,0,31,10] >;

C2×D10.13D4 in GAP, Magma, Sage, TeX

C_2\times D_{10}._{13}D_4
% in TeX

G:=Group("C2xD10.13D4");
// GroupNames label

G:=SmallGroup(320,1177);
// by ID

G=gap.SmallGroup(320,1177);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e^-1=b^5*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽