Copied to
clipboard

G = C10×C4⋊D4order 320 = 26·5

Direct product of C10 and C4⋊D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C4⋊D4, C43(D4×C10), C2017(C2×D4), (C2×C20)⋊40D4, C234(C5×D4), (C23×C4)⋊5C10, C221(D4×C10), (C23×C20)⋊14C2, (C22×D4)⋊4C10, (C22×C10)⋊14D4, (D4×C10)⋊61C22, C24.12(C2×C10), (C2×C10).342C24, (C2×C20).655C23, (C22×C20)⋊65C22, C10.181(C22×D4), C22.16(C23×C10), C23.69(C22×C10), (C23×C10).12C22, (C22×C10).257C23, C4⋊C49(C2×C10), C2.5(D4×C2×C10), (D4×C2×C10)⋊19C2, (C2×C4)⋊10(C5×D4), (C2×C4⋊C4)⋊14C10, (C10×C4⋊C4)⋊41C2, (C2×D4)⋊9(C2×C10), (C2×C10)⋊10(C2×D4), C2.5(C10×C4○D4), (C2×C22⋊C4)⋊9C10, (C5×C4⋊C4)⋊65C22, (C10×C22⋊C4)⋊29C2, C22⋊C411(C2×C10), (C22×C4)⋊18(C2×C10), C10.224(C2×C4○D4), C22.29(C5×C4○D4), (C5×C22⋊C4)⋊65C22, (C2×C4).11(C22×C10), (C2×C10).229(C4○D4), SmallGroup(320,1524)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C4⋊D4
C1C2C22C2×C10C22×C10D4×C10C5×C4⋊D4 — C10×C4⋊D4
C1C22 — C10×C4⋊D4
C1C22×C10 — C10×C4⋊D4

Generators and relations for C10×C4⋊D4
 G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 706 in 426 conjugacy classes, 194 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C20, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C22×D4, C22×D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C4⋊D4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, C22×C20, D4×C10, D4×C10, C23×C10, C23×C10, C10×C22⋊C4, C10×C4⋊C4, C5×C4⋊D4, C23×C20, D4×C2×C10, D4×C2×C10, C10×C4⋊D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C24, C2×C10, C4⋊D4, C22×D4, C2×C4○D4, C5×D4, C22×C10, C2×C4⋊D4, D4×C10, C5×C4○D4, C23×C10, C5×C4⋊D4, D4×C2×C10, C10×C4○D4, C10×C4⋊D4

Smallest permutation representation of C10×C4⋊D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 119 67 136)(2 120 68 137)(3 111 69 138)(4 112 70 139)(5 113 61 140)(6 114 62 131)(7 115 63 132)(8 116 64 133)(9 117 65 134)(10 118 66 135)(11 78 34 95)(12 79 35 96)(13 80 36 97)(14 71 37 98)(15 72 38 99)(16 73 39 100)(17 74 40 91)(18 75 31 92)(19 76 32 93)(20 77 33 94)(21 82 153 101)(22 83 154 102)(23 84 155 103)(24 85 156 104)(25 86 157 105)(26 87 158 106)(27 88 159 107)(28 89 160 108)(29 90 151 109)(30 81 152 110)(41 126 54 145)(42 127 55 146)(43 128 56 147)(44 129 57 148)(45 130 58 149)(46 121 59 150)(47 122 60 141)(48 123 51 142)(49 124 52 143)(50 125 53 144)
(1 88 48 74)(2 89 49 75)(3 90 50 76)(4 81 41 77)(5 82 42 78)(6 83 43 79)(7 84 44 80)(8 85 45 71)(9 86 46 72)(10 87 47 73)(11 113 21 127)(12 114 22 128)(13 115 23 129)(14 116 24 130)(15 117 25 121)(16 118 26 122)(17 119 27 123)(18 120 28 124)(19 111 29 125)(20 112 30 126)(31 137 160 143)(32 138 151 144)(33 139 152 145)(34 140 153 146)(35 131 154 147)(36 132 155 148)(37 133 156 149)(38 134 157 150)(39 135 158 141)(40 136 159 142)(51 91 67 107)(52 92 68 108)(53 93 69 109)(54 94 70 110)(55 95 61 101)(56 96 62 102)(57 97 63 103)(58 98 64 104)(59 99 65 105)(60 100 66 106)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 61)(48 62)(49 63)(50 64)(71 93)(72 94)(73 95)(74 96)(75 97)(76 98)(77 99)(78 100)(79 91)(80 92)(81 105)(82 106)(83 107)(84 108)(85 109)(86 110)(87 101)(88 102)(89 103)(90 104)(111 130)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(118 127)(119 128)(120 129)(131 142)(132 143)(133 144)(134 145)(135 146)(136 147)(137 148)(138 149)(139 150)(140 141)(151 156)(152 157)(153 158)(154 159)(155 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,119,67,136)(2,120,68,137)(3,111,69,138)(4,112,70,139)(5,113,61,140)(6,114,62,131)(7,115,63,132)(8,116,64,133)(9,117,65,134)(10,118,66,135)(11,78,34,95)(12,79,35,96)(13,80,36,97)(14,71,37,98)(15,72,38,99)(16,73,39,100)(17,74,40,91)(18,75,31,92)(19,76,32,93)(20,77,33,94)(21,82,153,101)(22,83,154,102)(23,84,155,103)(24,85,156,104)(25,86,157,105)(26,87,158,106)(27,88,159,107)(28,89,160,108)(29,90,151,109)(30,81,152,110)(41,126,54,145)(42,127,55,146)(43,128,56,147)(44,129,57,148)(45,130,58,149)(46,121,59,150)(47,122,60,141)(48,123,51,142)(49,124,52,143)(50,125,53,144), (1,88,48,74)(2,89,49,75)(3,90,50,76)(4,81,41,77)(5,82,42,78)(6,83,43,79)(7,84,44,80)(8,85,45,71)(9,86,46,72)(10,87,47,73)(11,113,21,127)(12,114,22,128)(13,115,23,129)(14,116,24,130)(15,117,25,121)(16,118,26,122)(17,119,27,123)(18,120,28,124)(19,111,29,125)(20,112,30,126)(31,137,160,143)(32,138,151,144)(33,139,152,145)(34,140,153,146)(35,131,154,147)(36,132,155,148)(37,133,156,149)(38,134,157,150)(39,135,158,141)(40,136,159,142)(51,91,67,107)(52,92,68,108)(53,93,69,109)(54,94,70,110)(55,95,61,101)(56,96,62,102)(57,97,63,103)(58,98,64,104)(59,99,65,105)(60,100,66,106), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,61)(48,62)(49,63)(50,64)(71,93)(72,94)(73,95)(74,96)(75,97)(76,98)(77,99)(78,100)(79,91)(80,92)(81,105)(82,106)(83,107)(84,108)(85,109)(86,110)(87,101)(88,102)(89,103)(90,104)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)(151,156)(152,157)(153,158)(154,159)(155,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,119,67,136)(2,120,68,137)(3,111,69,138)(4,112,70,139)(5,113,61,140)(6,114,62,131)(7,115,63,132)(8,116,64,133)(9,117,65,134)(10,118,66,135)(11,78,34,95)(12,79,35,96)(13,80,36,97)(14,71,37,98)(15,72,38,99)(16,73,39,100)(17,74,40,91)(18,75,31,92)(19,76,32,93)(20,77,33,94)(21,82,153,101)(22,83,154,102)(23,84,155,103)(24,85,156,104)(25,86,157,105)(26,87,158,106)(27,88,159,107)(28,89,160,108)(29,90,151,109)(30,81,152,110)(41,126,54,145)(42,127,55,146)(43,128,56,147)(44,129,57,148)(45,130,58,149)(46,121,59,150)(47,122,60,141)(48,123,51,142)(49,124,52,143)(50,125,53,144), (1,88,48,74)(2,89,49,75)(3,90,50,76)(4,81,41,77)(5,82,42,78)(6,83,43,79)(7,84,44,80)(8,85,45,71)(9,86,46,72)(10,87,47,73)(11,113,21,127)(12,114,22,128)(13,115,23,129)(14,116,24,130)(15,117,25,121)(16,118,26,122)(17,119,27,123)(18,120,28,124)(19,111,29,125)(20,112,30,126)(31,137,160,143)(32,138,151,144)(33,139,152,145)(34,140,153,146)(35,131,154,147)(36,132,155,148)(37,133,156,149)(38,134,157,150)(39,135,158,141)(40,136,159,142)(51,91,67,107)(52,92,68,108)(53,93,69,109)(54,94,70,110)(55,95,61,101)(56,96,62,102)(57,97,63,103)(58,98,64,104)(59,99,65,105)(60,100,66,106), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,61)(48,62)(49,63)(50,64)(71,93)(72,94)(73,95)(74,96)(75,97)(76,98)(77,99)(78,100)(79,91)(80,92)(81,105)(82,106)(83,107)(84,108)(85,109)(86,110)(87,101)(88,102)(89,103)(90,104)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)(151,156)(152,157)(153,158)(154,159)(155,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,119,67,136),(2,120,68,137),(3,111,69,138),(4,112,70,139),(5,113,61,140),(6,114,62,131),(7,115,63,132),(8,116,64,133),(9,117,65,134),(10,118,66,135),(11,78,34,95),(12,79,35,96),(13,80,36,97),(14,71,37,98),(15,72,38,99),(16,73,39,100),(17,74,40,91),(18,75,31,92),(19,76,32,93),(20,77,33,94),(21,82,153,101),(22,83,154,102),(23,84,155,103),(24,85,156,104),(25,86,157,105),(26,87,158,106),(27,88,159,107),(28,89,160,108),(29,90,151,109),(30,81,152,110),(41,126,54,145),(42,127,55,146),(43,128,56,147),(44,129,57,148),(45,130,58,149),(46,121,59,150),(47,122,60,141),(48,123,51,142),(49,124,52,143),(50,125,53,144)], [(1,88,48,74),(2,89,49,75),(3,90,50,76),(4,81,41,77),(5,82,42,78),(6,83,43,79),(7,84,44,80),(8,85,45,71),(9,86,46,72),(10,87,47,73),(11,113,21,127),(12,114,22,128),(13,115,23,129),(14,116,24,130),(15,117,25,121),(16,118,26,122),(17,119,27,123),(18,120,28,124),(19,111,29,125),(20,112,30,126),(31,137,160,143),(32,138,151,144),(33,139,152,145),(34,140,153,146),(35,131,154,147),(36,132,155,148),(37,133,156,149),(38,134,157,150),(39,135,158,141),(40,136,159,142),(51,91,67,107),(52,92,68,108),(53,93,69,109),(54,94,70,110),(55,95,61,101),(56,96,62,102),(57,97,63,103),(58,98,64,104),(59,99,65,105),(60,100,66,106)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,61),(48,62),(49,63),(50,64),(71,93),(72,94),(73,95),(74,96),(75,97),(76,98),(77,99),(78,100),(79,91),(80,92),(81,105),(82,106),(83,107),(84,108),(85,109),(86,110),(87,101),(88,102),(89,103),(90,104),(111,130),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(118,127),(119,128),(120,129),(131,142),(132,143),(133,144),(134,145),(135,146),(136,147),(137,148),(138,149),(139,150),(140,141),(151,156),(152,157),(153,158),(154,159),(155,160)]])

140 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I4J4K4L5A5B5C5D10A···10AB10AC···10AR10AS···10BH20A···20AF20AG···20AV
order12···2222222224···44444555510···1010···1010···1020···2020···20
size11···1222244442···2444411111···12···24···42···24···4

140 irreducible representations

dim111111111111222222
type++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4C4○D4C5×D4C5×D4C5×C4○D4
kernelC10×C4⋊D4C10×C22⋊C4C10×C4⋊C4C5×C4⋊D4C23×C20D4×C2×C10C2×C4⋊D4C2×C22⋊C4C2×C4⋊C4C4⋊D4C23×C4C22×D4C2×C20C22×C10C2×C10C2×C4C23C22
# reps12181348432412444161616

Matrix representation of C10×C4⋊D4 in GL6(𝔽41)

2300000
0230000
0016000
0001600
0000310
0000031
,
090000
900000
0003200
0032000
00004039
000011
,
0400000
100000
0004000
001000
0000400
000011
,
4000000
010000
001000
0004000
000010
00004040

G:=sub<GL(6,GF(41))| [23,0,0,0,0,0,0,23,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,31,0,0,0,0,0,0,31],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,40,1,0,0,0,0,0,1],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,40] >;

C10×C4⋊D4 in GAP, Magma, Sage, TeX

C_{10}\times C_4\rtimes D_4
% in TeX

G:=Group("C10xC4:D4");
// GroupNames label

G:=SmallGroup(320,1524);
// by ID

G=gap.SmallGroup(320,1524);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽