Copied to
clipboard

G = D5×C33order 330 = 2·3·5·11

Direct product of C33 and D5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D5×C33, C5⋊C66, C553C6, C1656C2, C152C22, SmallGroup(330,6)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C33
C1C5C55C165 — D5×C33
C5 — D5×C33
C1C33

Generators and relations for D5×C33
 G = < a,b,c | a33=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C6
5C22
5C66

Smallest permutation representation of D5×C33
On 165 points
Generators in S165
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)
(1 48 139 121 69)(2 49 140 122 70)(3 50 141 123 71)(4 51 142 124 72)(5 52 143 125 73)(6 53 144 126 74)(7 54 145 127 75)(8 55 146 128 76)(9 56 147 129 77)(10 57 148 130 78)(11 58 149 131 79)(12 59 150 132 80)(13 60 151 100 81)(14 61 152 101 82)(15 62 153 102 83)(16 63 154 103 84)(17 64 155 104 85)(18 65 156 105 86)(19 66 157 106 87)(20 34 158 107 88)(21 35 159 108 89)(22 36 160 109 90)(23 37 161 110 91)(24 38 162 111 92)(25 39 163 112 93)(26 40 164 113 94)(27 41 165 114 95)(28 42 133 115 96)(29 43 134 116 97)(30 44 135 117 98)(31 45 136 118 99)(32 46 137 119 67)(33 47 138 120 68)
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 89)(22 90)(23 91)(24 92)(25 93)(26 94)(27 95)(28 96)(29 97)(30 98)(31 99)(32 67)(33 68)(34 107)(35 108)(36 109)(37 110)(38 111)(39 112)(40 113)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 121)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(57 130)(58 131)(59 132)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)

G:=sub<Sym(165)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165), (1,48,139,121,69)(2,49,140,122,70)(3,50,141,123,71)(4,51,142,124,72)(5,52,143,125,73)(6,53,144,126,74)(7,54,145,127,75)(8,55,146,128,76)(9,56,147,129,77)(10,57,148,130,78)(11,58,149,131,79)(12,59,150,132,80)(13,60,151,100,81)(14,61,152,101,82)(15,62,153,102,83)(16,63,154,103,84)(17,64,155,104,85)(18,65,156,105,86)(19,66,157,106,87)(20,34,158,107,88)(21,35,159,108,89)(22,36,160,109,90)(23,37,161,110,91)(24,38,162,111,92)(25,39,163,112,93)(26,40,164,113,94)(27,41,165,114,95)(28,42,133,115,96)(29,43,134,116,97)(30,44,135,117,98)(31,45,136,118,99)(32,46,137,119,67)(33,47,138,120,68), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,67)(33,68)(34,107)(35,108)(36,109)(37,110)(38,111)(39,112)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165), (1,48,139,121,69)(2,49,140,122,70)(3,50,141,123,71)(4,51,142,124,72)(5,52,143,125,73)(6,53,144,126,74)(7,54,145,127,75)(8,55,146,128,76)(9,56,147,129,77)(10,57,148,130,78)(11,58,149,131,79)(12,59,150,132,80)(13,60,151,100,81)(14,61,152,101,82)(15,62,153,102,83)(16,63,154,103,84)(17,64,155,104,85)(18,65,156,105,86)(19,66,157,106,87)(20,34,158,107,88)(21,35,159,108,89)(22,36,160,109,90)(23,37,161,110,91)(24,38,162,111,92)(25,39,163,112,93)(26,40,164,113,94)(27,41,165,114,95)(28,42,133,115,96)(29,43,134,116,97)(30,44,135,117,98)(31,45,136,118,99)(32,46,137,119,67)(33,47,138,120,68), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,67)(33,68)(34,107)(35,108)(36,109)(37,110)(38,111)(39,112)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)], [(1,48,139,121,69),(2,49,140,122,70),(3,50,141,123,71),(4,51,142,124,72),(5,52,143,125,73),(6,53,144,126,74),(7,54,145,127,75),(8,55,146,128,76),(9,56,147,129,77),(10,57,148,130,78),(11,58,149,131,79),(12,59,150,132,80),(13,60,151,100,81),(14,61,152,101,82),(15,62,153,102,83),(16,63,154,103,84),(17,64,155,104,85),(18,65,156,105,86),(19,66,157,106,87),(20,34,158,107,88),(21,35,159,108,89),(22,36,160,109,90),(23,37,161,110,91),(24,38,162,111,92),(25,39,163,112,93),(26,40,164,113,94),(27,41,165,114,95),(28,42,133,115,96),(29,43,134,116,97),(30,44,135,117,98),(31,45,136,118,99),(32,46,137,119,67),(33,47,138,120,68)], [(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,89),(22,90),(23,91),(24,92),(25,93),(26,94),(27,95),(28,96),(29,97),(30,98),(31,99),(32,67),(33,68),(34,107),(35,108),(36,109),(37,110),(38,111),(39,112),(40,113),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,121),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(57,130),(58,131),(59,132),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106)]])

132 conjugacy classes

class 1  2 3A3B5A5B6A6B11A···11J15A15B15C15D22A···22J33A···33T55A···55T66A···66T165A···165AN
order1233556611···111515151522···2233···3355···5566···66165···165
size151122551···122225···51···12···25···52···2

132 irreducible representations

dim111111112222
type+++
imageC1C2C3C6C11C22C33C66D5C3×D5D5×C11D5×C33
kernelD5×C33C165D5×C11C55C3×D5C15D5C5C33C11C3C1
# reps112210102020242040

Matrix representation of D5×C33 in GL2(𝔽331) generated by

2190
0219
,
1161
3300
,
01
10
G:=sub<GL(2,GF(331))| [219,0,0,219],[116,330,1,0],[0,1,1,0] >;

D5×C33 in GAP, Magma, Sage, TeX

D_5\times C_{33}
% in TeX

G:=Group("D5xC33");
// GroupNames label

G:=SmallGroup(330,6);
// by ID

G=gap.SmallGroup(330,6);
# by ID

G:=PCGroup([4,-2,-3,-11,-5,4227]);
// Polycyclic

G:=Group<a,b,c|a^33=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C33 in TeX

׿
×
𝔽