Copied to
clipboard

G = D8×C21order 336 = 24·3·7

Direct product of C21 and D8

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: D8×C21, D4⋊C42, C81C42, C5613C6, C243C14, C16811C2, C42.54D4, C84.77C22, (C7×D4)⋊10C6, (C3×D4)⋊4C14, C4.1(C2×C42), C2.3(D4×C21), C6.14(C7×D4), (D4×C21)⋊10C2, C28.40(C2×C6), C14.30(C3×D4), C12.17(C2×C14), SmallGroup(336,111)

Series: Derived Chief Lower central Upper central

C1C4 — D8×C21
C1C2C4C28C84D4×C21 — D8×C21
C1C2C4 — D8×C21
C1C42C84 — D8×C21

Generators and relations for D8×C21
 G = < a,b,c | a21=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

4C2
4C2
2C22
2C22
4C6
4C6
4C14
4C14
2C2×C6
2C2×C6
2C2×C14
2C2×C14
4C42
4C42
2C2×C42
2C2×C42

Smallest permutation representation of D8×C21
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 28 83 152 43 140 107 96)(2 29 84 153 44 141 108 97)(3 30 64 154 45 142 109 98)(4 31 65 155 46 143 110 99)(5 32 66 156 47 144 111 100)(6 33 67 157 48 145 112 101)(7 34 68 158 49 146 113 102)(8 35 69 159 50 147 114 103)(9 36 70 160 51 127 115 104)(10 37 71 161 52 128 116 105)(11 38 72 162 53 129 117 85)(12 39 73 163 54 130 118 86)(13 40 74 164 55 131 119 87)(14 41 75 165 56 132 120 88)(15 42 76 166 57 133 121 89)(16 22 77 167 58 134 122 90)(17 23 78 168 59 135 123 91)(18 24 79 148 60 136 124 92)(19 25 80 149 61 137 125 93)(20 26 81 150 62 138 126 94)(21 27 82 151 63 139 106 95)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 91)(18 92)(19 93)(20 94)(21 95)(22 122)(23 123)(24 124)(25 125)(26 126)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 115)(37 116)(38 117)(39 118)(40 119)(41 120)(42 121)(43 152)(44 153)(45 154)(46 155)(47 156)(48 157)(49 158)(50 159)(51 160)(52 161)(53 162)(54 163)(55 164)(56 165)(57 166)(58 167)(59 168)(60 148)(61 149)(62 150)(63 151)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)(77 134)(78 135)(79 136)(80 137)(81 138)(82 139)(83 140)(84 141)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,28,83,152,43,140,107,96)(2,29,84,153,44,141,108,97)(3,30,64,154,45,142,109,98)(4,31,65,155,46,143,110,99)(5,32,66,156,47,144,111,100)(6,33,67,157,48,145,112,101)(7,34,68,158,49,146,113,102)(8,35,69,159,50,147,114,103)(9,36,70,160,51,127,115,104)(10,37,71,161,52,128,116,105)(11,38,72,162,53,129,117,85)(12,39,73,163,54,130,118,86)(13,40,74,164,55,131,119,87)(14,41,75,165,56,132,120,88)(15,42,76,166,57,133,121,89)(16,22,77,167,58,134,122,90)(17,23,78,168,59,135,123,91)(18,24,79,148,60,136,124,92)(19,25,80,149,61,137,125,93)(20,26,81,150,62,138,126,94)(21,27,82,151,63,139,106,95), (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,95)(22,122)(23,123)(24,124)(25,125)(26,126)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,120)(42,121)(43,152)(44,153)(45,154)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,161)(53,162)(54,163)(55,164)(56,165)(57,166)(58,167)(59,168)(60,148)(61,149)(62,150)(63,151)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,138)(82,139)(83,140)(84,141)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,28,83,152,43,140,107,96)(2,29,84,153,44,141,108,97)(3,30,64,154,45,142,109,98)(4,31,65,155,46,143,110,99)(5,32,66,156,47,144,111,100)(6,33,67,157,48,145,112,101)(7,34,68,158,49,146,113,102)(8,35,69,159,50,147,114,103)(9,36,70,160,51,127,115,104)(10,37,71,161,52,128,116,105)(11,38,72,162,53,129,117,85)(12,39,73,163,54,130,118,86)(13,40,74,164,55,131,119,87)(14,41,75,165,56,132,120,88)(15,42,76,166,57,133,121,89)(16,22,77,167,58,134,122,90)(17,23,78,168,59,135,123,91)(18,24,79,148,60,136,124,92)(19,25,80,149,61,137,125,93)(20,26,81,150,62,138,126,94)(21,27,82,151,63,139,106,95), (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,95)(22,122)(23,123)(24,124)(25,125)(26,126)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,120)(42,121)(43,152)(44,153)(45,154)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,161)(53,162)(54,163)(55,164)(56,165)(57,166)(58,167)(59,168)(60,148)(61,149)(62,150)(63,151)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,138)(82,139)(83,140)(84,141) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,28,83,152,43,140,107,96),(2,29,84,153,44,141,108,97),(3,30,64,154,45,142,109,98),(4,31,65,155,46,143,110,99),(5,32,66,156,47,144,111,100),(6,33,67,157,48,145,112,101),(7,34,68,158,49,146,113,102),(8,35,69,159,50,147,114,103),(9,36,70,160,51,127,115,104),(10,37,71,161,52,128,116,105),(11,38,72,162,53,129,117,85),(12,39,73,163,54,130,118,86),(13,40,74,164,55,131,119,87),(14,41,75,165,56,132,120,88),(15,42,76,166,57,133,121,89),(16,22,77,167,58,134,122,90),(17,23,78,168,59,135,123,91),(18,24,79,148,60,136,124,92),(19,25,80,149,61,137,125,93),(20,26,81,150,62,138,126,94),(21,27,82,151,63,139,106,95)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,91),(18,92),(19,93),(20,94),(21,95),(22,122),(23,123),(24,124),(25,125),(26,126),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,115),(37,116),(38,117),(39,118),(40,119),(41,120),(42,121),(43,152),(44,153),(45,154),(46,155),(47,156),(48,157),(49,158),(50,159),(51,160),(52,161),(53,162),(54,163),(55,164),(56,165),(57,166),(58,167),(59,168),(60,148),(61,149),(62,150),(63,151),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133),(77,134),(78,135),(79,136),(80,137),(81,138),(82,139),(83,140),(84,141)])

147 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F7A···7F8A8B12A12B14A···14F14G···14R21A···21L24A24B24C24D28A···28F42A···42L42M···42AJ56A···56L84A···84L168A···168X
order12223346666667···788121214···1414···1421···212424242428···2842···4242···4256···5684···84168···168
size11441121144441···122221···14···41···122222···21···14···42···22···22···2

147 irreducible representations

dim11111111111122222222
type+++++
imageC1C2C2C3C6C6C7C14C14C21C42C42D4D8C3×D4C3×D8C7×D4C7×D8D4×C21D8×C21
kernelD8×C21C168D4×C21C7×D8C56C7×D4C3×D8C24C3×D4D8C8D4C42C21C14C7C6C3C2C1
# reps112224661212122412246121224

Matrix representation of D8×C21 in GL2(𝔽337) generated by

40
04
,
32413
324324
,
32413
1313
G:=sub<GL(2,GF(337))| [4,0,0,4],[324,324,13,324],[324,13,13,13] >;

D8×C21 in GAP, Magma, Sage, TeX

D_8\times C_{21}
% in TeX

G:=Group("D8xC21");
// GroupNames label

G:=SmallGroup(336,111);
// by ID

G=gap.SmallGroup(336,111);
# by ID

G:=PCGroup([6,-2,-2,-3,-7,-2,-2,1033,7564,3790,88]);
// Polycyclic

G:=Group<a,b,c|a^21=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D8×C21 in TeX

׿
×
𝔽