# Extensions 1→N→G→Q→1 with N=C7×D4 and Q=C6

Direct product G=N×Q with N=C7×D4 and Q=C6
dρLabelID
D4×C42168D4xC42336,205

Semidirect products G=N:Q with N=C7×D4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C7×D4)⋊1C6 = D4⋊F7φ: C6/C1C6 ⊆ Out C7×D45612+(C7xD4):1C6336,18
(C7×D4)⋊2C6 = D4×F7φ: C6/C1C6 ⊆ Out C7×D42812+(C7xD4):2C6336,125
(C7×D4)⋊3C6 = D42F7φ: C6/C1C6 ⊆ Out C7×D45612-(C7xD4):3C6336,126
(C7×D4)⋊4C6 = D8×C7⋊C3φ: C6/C1C6 ⊆ Out C7×D4566(C7xD4):4C6336,53
(C7×D4)⋊5C6 = C2×D4×C7⋊C3φ: C6/C2C3 ⊆ Out C7×D456(C7xD4):5C6336,165
(C7×D4)⋊6C6 = C4○D4×C7⋊C3φ: C6/C2C3 ⊆ Out C7×D4566(C7xD4):6C6336,167
(C7×D4)⋊7C6 = C3×D4⋊D7φ: C6/C3C2 ⊆ Out C7×D41684(C7xD4):7C6336,69
(C7×D4)⋊8C6 = C3×D4×D7φ: C6/C3C2 ⊆ Out C7×D4844(C7xD4):8C6336,178
(C7×D4)⋊9C6 = C3×D42D7φ: C6/C3C2 ⊆ Out C7×D41684(C7xD4):9C6336,179
(C7×D4)⋊10C6 = D8×C21φ: C6/C3C2 ⊆ Out C7×D41682(C7xD4):10C6336,111
(C7×D4)⋊11C6 = C4○D4×C21φ: trivial image1682(C7xD4):11C6336,207

Non-split extensions G=N.Q with N=C7×D4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C7×D4).1C6 = D4.F7φ: C6/C1C6 ⊆ Out C7×D45612-(C7xD4).1C6336,19
(C7×D4).2C6 = SD16×C7⋊C3φ: C6/C1C6 ⊆ Out C7×D4566(C7xD4).2C6336,54
(C7×D4).3C6 = C3×D4.D7φ: C6/C3C2 ⊆ Out C7×D41684(C7xD4).3C6336,70
(C7×D4).4C6 = SD16×C21φ: C6/C3C2 ⊆ Out C7×D41682(C7xD4).4C6336,112

׿
×
𝔽