Extensions 1→N→G→Q→1 with N=C14 and Q=C3xD4

Direct product G=NxQ with N=C14 and Q=C3xD4
dρLabelID
D4xC42168D4xC42336,205

Semidirect products G=N:Q with N=C14 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C14:1(C3xD4) = C2xC4:F7φ: C3xD4/C4C6 ⊆ Aut C1456C14:1(C3xD4)336,123
C14:2(C3xD4) = C2xDic7:C6φ: C3xD4/C22C6 ⊆ Aut C1456C14:2(C3xD4)336,130
C14:3(C3xD4) = C2xD4xC7:C3φ: C3xD4/D4C3 ⊆ Aut C1456C14:3(C3xD4)336,165
C14:4(C3xD4) = C6xD28φ: C3xD4/C12C2 ⊆ Aut C14168C14:4(C3xD4)336,176
C14:5(C3xD4) = C6xC7:D4φ: C3xD4/C2xC6C2 ⊆ Aut C14168C14:5(C3xD4)336,183

Non-split extensions G=N.Q with N=C14 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C14.1(C3xD4) = C56:C6φ: C3xD4/C4C6 ⊆ Aut C14566C14.1(C3xD4)336,9
C14.2(C3xD4) = D56:C3φ: C3xD4/C4C6 ⊆ Aut C14566+C14.2(C3xD4)336,10
C14.3(C3xD4) = C8.F7φ: C3xD4/C4C6 ⊆ Aut C141126-C14.3(C3xD4)336,11
C14.4(C3xD4) = C28:C12φ: C3xD4/C4C6 ⊆ Aut C14112C14.4(C3xD4)336,16
C14.5(C3xD4) = Dic7:C12φ: C3xD4/C22C6 ⊆ Aut C14112C14.5(C3xD4)336,15
C14.6(C3xD4) = D14:C12φ: C3xD4/C22C6 ⊆ Aut C1456C14.6(C3xD4)336,17
C14.7(C3xD4) = D4:F7φ: C3xD4/C22C6 ⊆ Aut C145612+C14.7(C3xD4)336,18
C14.8(C3xD4) = D4.F7φ: C3xD4/C22C6 ⊆ Aut C145612-C14.8(C3xD4)336,19
C14.9(C3xD4) = Q8:2F7φ: C3xD4/C22C6 ⊆ Aut C145612+C14.9(C3xD4)336,20
C14.10(C3xD4) = Q8.2F7φ: C3xD4/C22C6 ⊆ Aut C1411212-C14.10(C3xD4)336,21
C14.11(C3xD4) = C23.2F7φ: C3xD4/C22C6 ⊆ Aut C1456C14.11(C3xD4)336,22
C14.12(C3xD4) = C22:C4xC7:C3φ: C3xD4/D4C3 ⊆ Aut C1456C14.12(C3xD4)336,49
C14.13(C3xD4) = C4:C4xC7:C3φ: C3xD4/D4C3 ⊆ Aut C14112C14.13(C3xD4)336,50
C14.14(C3xD4) = D8xC7:C3φ: C3xD4/D4C3 ⊆ Aut C14566C14.14(C3xD4)336,53
C14.15(C3xD4) = SD16xC7:C3φ: C3xD4/D4C3 ⊆ Aut C14566C14.15(C3xD4)336,54
C14.16(C3xD4) = Q16xC7:C3φ: C3xD4/D4C3 ⊆ Aut C141126C14.16(C3xD4)336,55
C14.17(C3xD4) = C3xC56:C2φ: C3xD4/C12C2 ⊆ Aut C141682C14.17(C3xD4)336,60
C14.18(C3xD4) = C3xD56φ: C3xD4/C12C2 ⊆ Aut C141682C14.18(C3xD4)336,61
C14.19(C3xD4) = C3xDic28φ: C3xD4/C12C2 ⊆ Aut C143362C14.19(C3xD4)336,62
C14.20(C3xD4) = C3xC4:Dic7φ: C3xD4/C12C2 ⊆ Aut C14336C14.20(C3xD4)336,67
C14.21(C3xD4) = C3xDic7:C4φ: C3xD4/C2xC6C2 ⊆ Aut C14336C14.21(C3xD4)336,66
C14.22(C3xD4) = C3xD14:C4φ: C3xD4/C2xC6C2 ⊆ Aut C14168C14.22(C3xD4)336,68
C14.23(C3xD4) = C3xD4:D7φ: C3xD4/C2xC6C2 ⊆ Aut C141684C14.23(C3xD4)336,69
C14.24(C3xD4) = C3xD4.D7φ: C3xD4/C2xC6C2 ⊆ Aut C141684C14.24(C3xD4)336,70
C14.25(C3xD4) = C3xQ8:D7φ: C3xD4/C2xC6C2 ⊆ Aut C141684C14.25(C3xD4)336,71
C14.26(C3xD4) = C3xC7:Q16φ: C3xD4/C2xC6C2 ⊆ Aut C143364C14.26(C3xD4)336,72
C14.27(C3xD4) = C3xC23.D7φ: C3xD4/C2xC6C2 ⊆ Aut C14168C14.27(C3xD4)336,73
C14.28(C3xD4) = C22:C4xC21central extension (φ=1)168C14.28(C3xD4)336,107
C14.29(C3xD4) = C4:C4xC21central extension (φ=1)336C14.29(C3xD4)336,108
C14.30(C3xD4) = D8xC21central extension (φ=1)1682C14.30(C3xD4)336,111
C14.31(C3xD4) = SD16xC21central extension (φ=1)1682C14.31(C3xD4)336,112
C14.32(C3xD4) = Q16xC21central extension (φ=1)3362C14.32(C3xD4)336,113

׿
x
:
Z
F
o
wr
Q
<