extension | φ:Q→Aut N | d | ρ | Label | ID |
C14.1(C3xD4) = C56:C6 | φ: C3xD4/C4 → C6 ⊆ Aut C14 | 56 | 6 | C14.1(C3xD4) | 336,9 |
C14.2(C3xD4) = D56:C3 | φ: C3xD4/C4 → C6 ⊆ Aut C14 | 56 | 6+ | C14.2(C3xD4) | 336,10 |
C14.3(C3xD4) = C8.F7 | φ: C3xD4/C4 → C6 ⊆ Aut C14 | 112 | 6- | C14.3(C3xD4) | 336,11 |
C14.4(C3xD4) = C28:C12 | φ: C3xD4/C4 → C6 ⊆ Aut C14 | 112 | | C14.4(C3xD4) | 336,16 |
C14.5(C3xD4) = Dic7:C12 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 112 | | C14.5(C3xD4) | 336,15 |
C14.6(C3xD4) = D14:C12 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 56 | | C14.6(C3xD4) | 336,17 |
C14.7(C3xD4) = D4:F7 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 56 | 12+ | C14.7(C3xD4) | 336,18 |
C14.8(C3xD4) = D4.F7 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 56 | 12- | C14.8(C3xD4) | 336,19 |
C14.9(C3xD4) = Q8:2F7 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 56 | 12+ | C14.9(C3xD4) | 336,20 |
C14.10(C3xD4) = Q8.2F7 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 112 | 12- | C14.10(C3xD4) | 336,21 |
C14.11(C3xD4) = C23.2F7 | φ: C3xD4/C22 → C6 ⊆ Aut C14 | 56 | | C14.11(C3xD4) | 336,22 |
C14.12(C3xD4) = C22:C4xC7:C3 | φ: C3xD4/D4 → C3 ⊆ Aut C14 | 56 | | C14.12(C3xD4) | 336,49 |
C14.13(C3xD4) = C4:C4xC7:C3 | φ: C3xD4/D4 → C3 ⊆ Aut C14 | 112 | | C14.13(C3xD4) | 336,50 |
C14.14(C3xD4) = D8xC7:C3 | φ: C3xD4/D4 → C3 ⊆ Aut C14 | 56 | 6 | C14.14(C3xD4) | 336,53 |
C14.15(C3xD4) = SD16xC7:C3 | φ: C3xD4/D4 → C3 ⊆ Aut C14 | 56 | 6 | C14.15(C3xD4) | 336,54 |
C14.16(C3xD4) = Q16xC7:C3 | φ: C3xD4/D4 → C3 ⊆ Aut C14 | 112 | 6 | C14.16(C3xD4) | 336,55 |
C14.17(C3xD4) = C3xC56:C2 | φ: C3xD4/C12 → C2 ⊆ Aut C14 | 168 | 2 | C14.17(C3xD4) | 336,60 |
C14.18(C3xD4) = C3xD56 | φ: C3xD4/C12 → C2 ⊆ Aut C14 | 168 | 2 | C14.18(C3xD4) | 336,61 |
C14.19(C3xD4) = C3xDic28 | φ: C3xD4/C12 → C2 ⊆ Aut C14 | 336 | 2 | C14.19(C3xD4) | 336,62 |
C14.20(C3xD4) = C3xC4:Dic7 | φ: C3xD4/C12 → C2 ⊆ Aut C14 | 336 | | C14.20(C3xD4) | 336,67 |
C14.21(C3xD4) = C3xDic7:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 336 | | C14.21(C3xD4) | 336,66 |
C14.22(C3xD4) = C3xD14:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 168 | | C14.22(C3xD4) | 336,68 |
C14.23(C3xD4) = C3xD4:D7 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 168 | 4 | C14.23(C3xD4) | 336,69 |
C14.24(C3xD4) = C3xD4.D7 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 168 | 4 | C14.24(C3xD4) | 336,70 |
C14.25(C3xD4) = C3xQ8:D7 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 168 | 4 | C14.25(C3xD4) | 336,71 |
C14.26(C3xD4) = C3xC7:Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 336 | 4 | C14.26(C3xD4) | 336,72 |
C14.27(C3xD4) = C3xC23.D7 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C14 | 168 | | C14.27(C3xD4) | 336,73 |
C14.28(C3xD4) = C22:C4xC21 | central extension (φ=1) | 168 | | C14.28(C3xD4) | 336,107 |
C14.29(C3xD4) = C4:C4xC21 | central extension (φ=1) | 336 | | C14.29(C3xD4) | 336,108 |
C14.30(C3xD4) = D8xC21 | central extension (φ=1) | 168 | 2 | C14.30(C3xD4) | 336,111 |
C14.31(C3xD4) = SD16xC21 | central extension (φ=1) | 168 | 2 | C14.31(C3xD4) | 336,112 |
C14.32(C3xD4) = Q16xC21 | central extension (φ=1) | 336 | 2 | C14.32(C3xD4) | 336,113 |