Copied to
clipboard

G = Q82F7order 336 = 24·3·7

The semidirect product of Q8 and F7 acting via F7/C7⋊C3=C2

metabelian, supersoluble, monomial

Aliases: Q82F7, D28.1C6, Q8⋊D7⋊C3, C7⋊C83C6, C7⋊C243C2, C7⋊C33SD16, (C7×Q8)⋊3C6, C73(C3×SD16), C4⋊F7.1C2, C4.3(C2×F7), C28.3(C2×C6), C14.9(C3×D4), C2.6(Dic7⋊C6), (Q8×C7⋊C3)⋊1C2, (C2×C7⋊C3).9D4, (C4×C7⋊C3).3C22, SmallGroup(336,20)

Series: Derived Chief Lower central Upper central

C1C28 — Q82F7
C1C7C14C28C4×C7⋊C3C4⋊F7 — Q82F7
C7C14C28 — Q82F7
C1C2C4Q8

Generators and relations for Q82F7
 G = < a,b,c,d | a4=c7=d6=1, b2=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c5 >

28C2
7C3
2C4
14C22
7C6
28C6
4D7
7D4
7C8
7C12
14C12
14C2×C6
2C28
2D14
4F7
7SD16
7C3×D4
7C3×Q8
7C24
2C4×C7⋊C3
2C2×F7
7C3×SD16

Character table of Q82F7

 class 12A2B3A3B4A4B6A6B6C6D78A8B12A12B12C12D1424A24B24C24D28A28B28C
 size 112877247728286141414142828614141414121212
ρ111111111111111111111111111    trivial
ρ211-1111-111-1-111111-1-111111-11-1    linear of order 2
ρ311-1111111-1-11-1-111111-1-1-1-1111    linear of order 2
ρ4111111-111111-1-111-1-11-1-1-1-1-11-1    linear of order 2
ρ511-1ζ3ζ3211ζ32ζ3ζ65ζ61-1-1ζ32ζ3ζ3ζ321ζ6ζ65ζ6ζ65111    linear of order 6
ρ6111ζ3ζ3211ζ32ζ3ζ3ζ32111ζ32ζ3ζ3ζ321ζ32ζ3ζ32ζ3111    linear of order 3
ρ7111ζ3ζ321-1ζ32ζ3ζ3ζ321-1-1ζ32ζ3ζ65ζ61ζ6ζ65ζ6ζ65-11-1    linear of order 6
ρ811-1ζ3ζ321-1ζ32ζ3ζ65ζ6111ζ32ζ3ζ65ζ61ζ32ζ3ζ32ζ3-11-1    linear of order 6
ρ9111ζ32ζ311ζ3ζ32ζ32ζ3111ζ3ζ32ζ32ζ31ζ3ζ32ζ3ζ32111    linear of order 3
ρ1011-1ζ32ζ311ζ3ζ32ζ6ζ651-1-1ζ3ζ32ζ32ζ31ζ65ζ6ζ65ζ6111    linear of order 6
ρ11111ζ32ζ31-1ζ3ζ32ζ32ζ31-1-1ζ3ζ32ζ6ζ651ζ65ζ6ζ65ζ6-11-1    linear of order 6
ρ1211-1ζ32ζ31-1ζ3ζ32ζ6ζ65111ζ3ζ32ζ6ζ651ζ3ζ32ζ3ζ32-11-1    linear of order 6
ρ1322022-202200200-2-200200000-20    orthogonal lifted from D4
ρ14220-1+-3-1--3-20-1--3-1+-3002001+-31--300200000-20    complex lifted from C3×D4
ρ15220-1--3-1+-3-20-1+-3-1--3002001--31+-300200000-20    complex lifted from C3×D4
ρ162-202200-2-2002-2--20000-2-2-2--2--2000    complex lifted from SD16
ρ172-202200-2-2002--2-20000-2--2--2-2-2000    complex lifted from SD16
ρ182-20-1+-3-1--3001+-31--3002--2-20000-2ζ87ζ3285ζ32ζ87ζ385ζ3ζ83ζ328ζ32ζ83ζ38ζ3000    complex lifted from C3×SD16
ρ192-20-1--3-1+-3001--31+-3002-2--20000-2ζ83ζ38ζ3ζ83ζ328ζ32ζ87ζ385ζ3ζ87ζ3285ζ32000    complex lifted from C3×SD16
ρ202-20-1--3-1+-3001--31+-3002--2-20000-2ζ87ζ385ζ3ζ87ζ3285ζ32ζ83ζ38ζ3ζ83ζ328ζ32000    complex lifted from C3×SD16
ρ212-20-1+-3-1--3001+-31--3002-2--20000-2ζ83ζ328ζ32ζ83ζ38ζ3ζ87ζ3285ζ32ζ87ζ385ζ3000    complex lifted from C3×SD16
ρ22660006-60000-1000000-100001-11    orthogonal lifted from C2×F7
ρ2366000660000-1000000-10000-1-1-1    orthogonal lifted from F7
ρ2466000-600000-1000000-10000--71-7    complex lifted from Dic7⋊C6
ρ2566000-600000-1000000-10000-71--7    complex lifted from Dic7⋊C6
ρ2612-12000000000-200000020000000    orthogonal faithful, Schur index 2

Smallest permutation representation of Q82F7
On 56 points
Generators in S56
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 4 3 7 5 6)(9 11 10 14 12 13)(15 22)(16 25 17 28 19 27)(18 24 21 26 20 23)(29 43)(30 46 31 49 33 48)(32 45 35 47 34 44)(36 50)(37 53 38 56 40 55)(39 52 42 54 41 51)

G:=sub<Sym(56)| (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,4,3,7,5,6)(9,11,10,14,12,13)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23)(29,43)(30,46,31,49,33,48)(32,45,35,47,34,44)(36,50)(37,53,38,56,40,55)(39,52,42,54,41,51)>;

G:=Group( (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,4,3,7,5,6)(9,11,10,14,12,13)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23)(29,43)(30,46,31,49,33,48)(32,45,35,47,34,44)(36,50)(37,53,38,56,40,55)(39,52,42,54,41,51) );

G=PermutationGroup([[(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56)], [(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,4,3,7,5,6),(9,11,10,14,12,13),(15,22),(16,25,17,28,19,27),(18,24,21,26,20,23),(29,43),(30,46,31,49,33,48),(32,45,35,47,34,44),(36,50),(37,53,38,56,40,55),(39,52,42,54,41,51)]])

Matrix representation of Q82F7 in GL8(𝔽337)

1336000000
2336000000
00100000
00010000
00001000
00000100
00000010
00000001
,
098000000
1960000000
0033600000
0003360000
0000336000
0000033600
0000003360
0000000336
,
10000000
01000000
0000000336
0010000336
0001000336
0000100336
0000010336
0000001336
,
128209000000
0209000000
00000010
00001000
00100000
00000001
00000100
00010000

G:=sub<GL(8,GF(337))| [1,2,0,0,0,0,0,0,336,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,196,0,0,0,0,0,0,98,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,336,336,336,336,336,336],[128,0,0,0,0,0,0,0,209,209,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0] >;

Q82F7 in GAP, Magma, Sage, TeX

Q_8\rtimes_2F_7
% in TeX

G:=Group("Q8:2F7");
// GroupNames label

G:=SmallGroup(336,20);
// by ID

G=gap.SmallGroup(336,20);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,169,151,867,441,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^7=d^6=1,b^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of Q82F7 in TeX
Character table of Q82F7 in TeX

׿
×
𝔽