Copied to
clipboard

G = Q8.2F7order 336 = 24·3·7

The non-split extension by Q8 of F7 acting via F7/C7⋊C3=C2

metabelian, supersoluble, monomial

Aliases: Q8.2F7, Dic14.1C6, C7⋊C8.C6, C7⋊C24.C2, C7⋊C32Q16, C7⋊Q16⋊C3, C72(C3×Q16), C4.4(C2×F7), C28.4(C2×C6), (C7×Q8).3C6, C4.F7.1C2, C14.10(C3×D4), C2.7(Dic7⋊C6), (Q8×C7⋊C3).1C2, (C2×C7⋊C3).10D4, (C4×C7⋊C3).4C22, SmallGroup(336,21)

Series: Derived Chief Lower central Upper central

C1C28 — Q8.2F7
C1C7C14C28C4×C7⋊C3C4.F7 — Q8.2F7
C7C14C28 — Q8.2F7
C1C2C4Q8

Generators and relations for Q8.2F7
 G = < a,b,c,d | a4=c7=1, b2=d6=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c5 >

7C3
2C4
14C4
7C6
7Q8
7C8
7C12
14C12
14C12
2Dic7
2C28
7Q16
7C3×Q8
7C3×Q8
7C24
2C4×C7⋊C3
2C7⋊C12
7C3×Q16

Character table of Q8.2F7

 class 123A3B4A4B4C6A6B78A8B12A12B12C12D12E12F1424A24B24C24D28A28B28C
 size 117724287761414141428282828614141414121212
ρ111111111111111111111111111    trivial
ρ2111111-1111-1-111-1-1111-1-1-1-1111    linear of order 2
ρ311111-11111-1-11111-1-11-1-1-1-1-11-1    linear of order 2
ρ411111-1-11111111-1-1-1-111111-11-1    linear of order 2
ρ511ζ32ζ31-11ζ3ζ321-1-1ζ32ζ3ζ32ζ3ζ65ζ61ζ65ζ6ζ65ζ6-11-1    linear of order 6
ρ611ζ32ζ3111ζ3ζ32111ζ32ζ3ζ32ζ3ζ3ζ321ζ3ζ32ζ3ζ32111    linear of order 3
ρ711ζ3ζ321-1-1ζ32ζ3111ζ3ζ32ζ65ζ6ζ6ζ651ζ32ζ3ζ32ζ3-11-1    linear of order 6
ρ811ζ32ζ311-1ζ3ζ321-1-1ζ32ζ3ζ6ζ65ζ3ζ321ζ65ζ6ζ65ζ6111    linear of order 6
ρ911ζ3ζ321-11ζ32ζ31-1-1ζ3ζ32ζ3ζ32ζ6ζ651ζ6ζ65ζ6ζ65-11-1    linear of order 6
ρ1011ζ3ζ3211-1ζ32ζ31-1-1ζ3ζ32ζ65ζ6ζ32ζ31ζ6ζ65ζ6ζ65111    linear of order 6
ρ1111ζ3ζ32111ζ32ζ3111ζ3ζ32ζ3ζ32ζ32ζ31ζ32ζ3ζ32ζ3111    linear of order 3
ρ1211ζ32ζ31-1-1ζ3ζ32111ζ32ζ3ζ6ζ65ζ65ζ61ζ3ζ32ζ3ζ32-11-1    linear of order 6
ρ132222-20022200-2-20000200000-20    orthogonal lifted from D4
ρ142-222000-2-222-2000000-222-2-2000    symplectic lifted from Q16, Schur index 2
ρ152-222000-2-22-22000000-2-2-222000    symplectic lifted from Q16, Schur index 2
ρ1622-1--3-1+-3-200-1+-3-1--32001+-31--30000200000-20    complex lifted from C3×D4
ρ1722-1+-3-1--3-200-1--3-1+-32001--31+-30000200000-20    complex lifted from C3×D4
ρ182-2-1--3-1+-30001--31+-32-22000000-2ζ83ζ38ζ3ζ83ζ328ζ32ζ87ζ385ζ3ζ87ζ3285ζ32000    complex lifted from C3×Q16
ρ192-2-1+-3-1--30001+-31--32-22000000-2ζ83ζ328ζ32ζ83ζ38ζ3ζ87ζ3285ζ32ζ87ζ385ζ3000    complex lifted from C3×Q16
ρ202-2-1--3-1+-30001--31+-322-2000000-2ζ87ζ385ζ3ζ87ζ3285ζ32ζ83ζ38ζ3ζ83ζ328ζ32000    complex lifted from C3×Q16
ρ212-2-1+-3-1--30001+-31--322-2000000-2ζ87ζ3285ζ32ζ87ζ385ζ3ζ83ζ328ζ32ζ83ζ38ζ3000    complex lifted from C3×Q16
ρ2266006-6000-100000000-100001-11    orthogonal lifted from C2×F7
ρ23660066000-100000000-10000-1-1-1    orthogonal lifted from F7
ρ246600-60000-100000000-10000-71--7    complex lifted from Dic7⋊C6
ρ256600-60000-100000000-10000--71-7    complex lifted from Dic7⋊C6
ρ2612-120000000-20000000020000000    symplectic faithful, Schur index 2

Smallest permutation representation of Q8.2F7
On 112 points
Generators in S112
(1 7 3 5)(2 6 4 8)(9 13 11 15)(10 16 12 14)(17 45 23 51)(18 52 24 46)(19 47 25 41)(20 42 26 48)(21 49 27 43)(22 44 28 50)(29 80 35 86)(30 87 36 81)(31 82 37 88)(32 77 38 83)(33 84 39 78)(34 79 40 85)(53 93 59 99)(54 100 60 94)(55 95 61 89)(56 90 62 96)(57 97 63 91)(58 92 64 98)(65 112 71 106)(66 107 72 101)(67 102 73 108)(68 109 74 103)(69 104 75 110)(70 111 76 105)
(1 14 3 16)(2 11 4 9)(5 10 7 12)(6 13 8 15)(17 110 23 104)(18 70 24 76)(19 112 25 106)(20 72 26 66)(21 102 27 108)(22 74 28 68)(29 61 35 55)(30 90 36 96)(31 63 37 57)(32 92 38 98)(33 53 39 59)(34 94 40 100)(41 71 47 65)(42 107 48 101)(43 73 49 67)(44 109 50 103)(45 75 51 69)(46 111 52 105)(54 79 60 85)(56 81 62 87)(58 83 64 77)(78 93 84 99)(80 95 86 89)(82 97 88 91)
(1 23 19 63 27 55 59)(2 56 64 24 60 28 20)(3 17 25 57 21 61 53)(4 62 58 18 54 22 26)(5 45 41 97 49 89 93)(6 90 98 46 94 50 42)(7 51 47 91 43 95 99)(8 96 92 52 100 44 48)(9 87 83 70 79 74 66)(10 75 71 88 67 80 84)(11 81 77 76 85 68 72)(12 69 65 82 73 86 78)(13 36 32 111 40 103 107)(14 104 112 37 108 29 33)(15 30 38 105 34 109 101)(16 110 106 31 102 35 39)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,7,3,5)(2,6,4,8)(9,13,11,15)(10,16,12,14)(17,45,23,51)(18,52,24,46)(19,47,25,41)(20,42,26,48)(21,49,27,43)(22,44,28,50)(29,80,35,86)(30,87,36,81)(31,82,37,88)(32,77,38,83)(33,84,39,78)(34,79,40,85)(53,93,59,99)(54,100,60,94)(55,95,61,89)(56,90,62,96)(57,97,63,91)(58,92,64,98)(65,112,71,106)(66,107,72,101)(67,102,73,108)(68,109,74,103)(69,104,75,110)(70,111,76,105), (1,14,3,16)(2,11,4,9)(5,10,7,12)(6,13,8,15)(17,110,23,104)(18,70,24,76)(19,112,25,106)(20,72,26,66)(21,102,27,108)(22,74,28,68)(29,61,35,55)(30,90,36,96)(31,63,37,57)(32,92,38,98)(33,53,39,59)(34,94,40,100)(41,71,47,65)(42,107,48,101)(43,73,49,67)(44,109,50,103)(45,75,51,69)(46,111,52,105)(54,79,60,85)(56,81,62,87)(58,83,64,77)(78,93,84,99)(80,95,86,89)(82,97,88,91), (1,23,19,63,27,55,59)(2,56,64,24,60,28,20)(3,17,25,57,21,61,53)(4,62,58,18,54,22,26)(5,45,41,97,49,89,93)(6,90,98,46,94,50,42)(7,51,47,91,43,95,99)(8,96,92,52,100,44,48)(9,87,83,70,79,74,66)(10,75,71,88,67,80,84)(11,81,77,76,85,68,72)(12,69,65,82,73,86,78)(13,36,32,111,40,103,107)(14,104,112,37,108,29,33)(15,30,38,105,34,109,101)(16,110,106,31,102,35,39), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,7,3,5)(2,6,4,8)(9,13,11,15)(10,16,12,14)(17,45,23,51)(18,52,24,46)(19,47,25,41)(20,42,26,48)(21,49,27,43)(22,44,28,50)(29,80,35,86)(30,87,36,81)(31,82,37,88)(32,77,38,83)(33,84,39,78)(34,79,40,85)(53,93,59,99)(54,100,60,94)(55,95,61,89)(56,90,62,96)(57,97,63,91)(58,92,64,98)(65,112,71,106)(66,107,72,101)(67,102,73,108)(68,109,74,103)(69,104,75,110)(70,111,76,105), (1,14,3,16)(2,11,4,9)(5,10,7,12)(6,13,8,15)(17,110,23,104)(18,70,24,76)(19,112,25,106)(20,72,26,66)(21,102,27,108)(22,74,28,68)(29,61,35,55)(30,90,36,96)(31,63,37,57)(32,92,38,98)(33,53,39,59)(34,94,40,100)(41,71,47,65)(42,107,48,101)(43,73,49,67)(44,109,50,103)(45,75,51,69)(46,111,52,105)(54,79,60,85)(56,81,62,87)(58,83,64,77)(78,93,84,99)(80,95,86,89)(82,97,88,91), (1,23,19,63,27,55,59)(2,56,64,24,60,28,20)(3,17,25,57,21,61,53)(4,62,58,18,54,22,26)(5,45,41,97,49,89,93)(6,90,98,46,94,50,42)(7,51,47,91,43,95,99)(8,96,92,52,100,44,48)(9,87,83,70,79,74,66)(10,75,71,88,67,80,84)(11,81,77,76,85,68,72)(12,69,65,82,73,86,78)(13,36,32,111,40,103,107)(14,104,112,37,108,29,33)(15,30,38,105,34,109,101)(16,110,106,31,102,35,39), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,7,3,5),(2,6,4,8),(9,13,11,15),(10,16,12,14),(17,45,23,51),(18,52,24,46),(19,47,25,41),(20,42,26,48),(21,49,27,43),(22,44,28,50),(29,80,35,86),(30,87,36,81),(31,82,37,88),(32,77,38,83),(33,84,39,78),(34,79,40,85),(53,93,59,99),(54,100,60,94),(55,95,61,89),(56,90,62,96),(57,97,63,91),(58,92,64,98),(65,112,71,106),(66,107,72,101),(67,102,73,108),(68,109,74,103),(69,104,75,110),(70,111,76,105)], [(1,14,3,16),(2,11,4,9),(5,10,7,12),(6,13,8,15),(17,110,23,104),(18,70,24,76),(19,112,25,106),(20,72,26,66),(21,102,27,108),(22,74,28,68),(29,61,35,55),(30,90,36,96),(31,63,37,57),(32,92,38,98),(33,53,39,59),(34,94,40,100),(41,71,47,65),(42,107,48,101),(43,73,49,67),(44,109,50,103),(45,75,51,69),(46,111,52,105),(54,79,60,85),(56,81,62,87),(58,83,64,77),(78,93,84,99),(80,95,86,89),(82,97,88,91)], [(1,23,19,63,27,55,59),(2,56,64,24,60,28,20),(3,17,25,57,21,61,53),(4,62,58,18,54,22,26),(5,45,41,97,49,89,93),(6,90,98,46,94,50,42),(7,51,47,91,43,95,99),(8,96,92,52,100,44,48),(9,87,83,70,79,74,66),(10,75,71,88,67,80,84),(11,81,77,76,85,68,72),(12,69,65,82,73,86,78),(13,36,32,111,40,103,107),(14,104,112,37,108,29,33),(15,30,38,105,34,109,101),(16,110,106,31,102,35,39)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112)]])

Matrix representation of Q8.2F7 in GL8(𝔽337)

336336000000
21000000
00100000
00010000
00001000
00000100
00000010
00000001
,
15149000000
133186000000
0033600000
0003360000
0000336000
0000033600
0000003360
0000000336
,
10000000
01000000
0000000336
0010000336
0001000336
0000100336
0000010336
0000001336
,
53140000000
174284000000
00650065209272
00656520902720
002740272652720
00065272650209
000650274272272
006527427200272

G:=sub<GL(8,GF(337))| [336,2,0,0,0,0,0,0,336,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[151,133,0,0,0,0,0,0,49,186,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,336,336,336,336,336,336],[53,174,0,0,0,0,0,0,140,284,0,0,0,0,0,0,0,0,65,65,274,0,0,65,0,0,0,65,0,65,65,274,0,0,0,209,272,272,0,272,0,0,65,0,65,65,274,0,0,0,209,272,272,0,272,0,0,0,272,0,0,209,272,272] >;

Q8.2F7 in GAP, Magma, Sage, TeX

Q_8._2F_7
% in TeX

G:=Group("Q8.2F7");
// GroupNames label

G:=SmallGroup(336,21);
// by ID

G=gap.SmallGroup(336,21);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,169,151,867,441,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^7=1,b^2=d^6=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of Q8.2F7 in TeX
Character table of Q8.2F7 in TeX

׿
×
𝔽