direct product, metabelian, supersoluble, monomial
Aliases: C2×Dic7⋊C6, C23⋊2F7, C7⋊3(C6×D4), C14⋊2(C3×D4), C7⋊D4⋊4C6, D14⋊3(C2×C6), C7⋊C12⋊2C22, C22⋊3(C2×F7), (C22×C14)⋊2C6, Dic7⋊2(C2×C6), (C2×Dic7)⋊4C6, (C22×D7)⋊3C6, (C22×F7)⋊3C2, (C2×F7)⋊3C22, C2.10(C22×F7), C14.10(C22×C6), (C2×C7⋊D4)⋊C3, C7⋊C3⋊3(C2×D4), (C2×C7⋊C3)⋊2D4, (C2×C7⋊C12)⋊4C2, (C2×C14)⋊4(C2×C6), (C23×C7⋊C3)⋊1C2, (C2×C7⋊C3).10C23, (C22×C7⋊C3)⋊2C22, SmallGroup(336,130)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Dic7⋊C6
G = < a,b,c,d | a2=b14=d6=1, c2=b7, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b11, dcd-1=b7c >
Subgroups: 464 in 108 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C7, C2×C4, D4, C23, C23, C12, C2×C6, D7, C14, C14, C14, C2×D4, C7⋊C3, C2×C12, C3×D4, C22×C6, Dic7, D14, D14, C2×C14, C2×C14, C2×C14, F7, C2×C7⋊C3, C2×C7⋊C3, C2×C7⋊C3, C6×D4, C2×Dic7, C7⋊D4, C22×D7, C22×C14, C7⋊C12, C2×F7, C2×F7, C22×C7⋊C3, C22×C7⋊C3, C22×C7⋊C3, C2×C7⋊D4, C2×C7⋊C12, Dic7⋊C6, C22×F7, C23×C7⋊C3, C2×Dic7⋊C6
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, F7, C6×D4, C2×F7, Dic7⋊C6, C22×F7, C2×Dic7⋊C6
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 53)(30 54)(31 55)(32 56)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 45 8 52)(2 44 9 51)(3 43 10 50)(4 56 11 49)(5 55 12 48)(6 54 13 47)(7 53 14 46)(15 35 22 42)(16 34 23 41)(17 33 24 40)(18 32 25 39)(19 31 26 38)(20 30 27 37)(21 29 28 36)
(1 15)(2 24 12 16 10 26)(3 19 9 17 5 23)(4 28 6 18 14 20)(7 27 11 21 13 25)(8 22)(29 54 39 46 37 56)(30 49 36 47 32 53)(31 44 33 48 41 50)(34 43 38 51 40 55)(35 52)(42 45)
G:=sub<Sym(56)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,53)(30,54)(31,55)(32,56)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,45,8,52)(2,44,9,51)(3,43,10,50)(4,56,11,49)(5,55,12,48)(6,54,13,47)(7,53,14,46)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36), (1,15)(2,24,12,16,10,26)(3,19,9,17,5,23)(4,28,6,18,14,20)(7,27,11,21,13,25)(8,22)(29,54,39,46,37,56)(30,49,36,47,32,53)(31,44,33,48,41,50)(34,43,38,51,40,55)(35,52)(42,45)>;
G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,53)(30,54)(31,55)(32,56)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,45,8,52)(2,44,9,51)(3,43,10,50)(4,56,11,49)(5,55,12,48)(6,54,13,47)(7,53,14,46)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36), (1,15)(2,24,12,16,10,26)(3,19,9,17,5,23)(4,28,6,18,14,20)(7,27,11,21,13,25)(8,22)(29,54,39,46,37,56)(30,49,36,47,32,53)(31,44,33,48,41,50)(34,43,38,51,40,55)(35,52)(42,45) );
G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,53),(30,54),(31,55),(32,56),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,45,8,52),(2,44,9,51),(3,43,10,50),(4,56,11,49),(5,55,12,48),(6,54,13,47),(7,53,14,46),(15,35,22,42),(16,34,23,41),(17,33,24,40),(18,32,25,39),(19,31,26,38),(20,30,27,37),(21,29,28,36)], [(1,15),(2,24,12,16,10,26),(3,19,9,17,5,23),(4,28,6,18,14,20),(7,27,11,21,13,25),(8,22),(29,54,39,46,37,56),(30,49,36,47,32,53),(31,44,33,48,41,50),(34,43,38,51,40,55),(35,52),(42,45)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | ··· | 6F | 6G | ··· | 6N | 7 | 12A | 12B | 12C | 12D | 14A | ··· | 14G |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 7 | 12 | 12 | 12 | 12 | 14 | ··· | 14 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 14 | 14 | 7 | 7 | 14 | 14 | 7 | ··· | 7 | 14 | ··· | 14 | 6 | 14 | 14 | 14 | 14 | 6 | ··· | 6 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | D4 | C3×D4 | F7 | C2×F7 | Dic7⋊C6 |
kernel | C2×Dic7⋊C6 | C2×C7⋊C12 | Dic7⋊C6 | C22×F7 | C23×C7⋊C3 | C2×C7⋊D4 | C2×Dic7 | C7⋊D4 | C22×D7 | C22×C14 | C2×C7⋊C3 | C14 | C23 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 4 | 1 | 3 | 4 |
Matrix representation of C2×Dic7⋊C6 ►in GL8(𝔽337)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 336 |
336 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 125 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 125 | 336 | 0 | 0 | 0 |
0 | 0 | 1 | 124 | 336 | 0 | 0 | 0 |
0 | 0 | 336 | 212 | 1 | 0 | 336 | 0 |
0 | 0 | 336 | 212 | 1 | 0 | 0 | 336 |
0 | 0 | 211 | 88 | 2 | 336 | 212 | 213 |
313 | 249 | 0 | 0 | 0 | 0 | 0 | 0 |
64 | 24 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 336 |
0 | 0 | 212 | 213 | 1 | 0 | 212 | 213 |
0 | 0 | 179 | 156 | 314 | 336 | 0 | 0 |
0 | 0 | 180 | 156 | 314 | 336 | 0 | 0 |
0 | 0 | 179 | 157 | 314 | 336 | 0 | 0 |
208 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
101 | 129 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 124 | 336 | 212 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 336 | 213 | 0 | 0 | 0 |
0 | 0 | 158 | 181 | 23 | 1 | 0 | 0 |
0 | 0 | 281 | 179 | 235 | 124 | 336 | 336 |
0 | 0 | 158 | 181 | 23 | 0 | 1 | 0 |
G:=sub<GL(8,GF(337))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,1,336,336,211,0,0,125,125,124,212,212,88,0,0,336,336,336,1,1,2,0,0,0,0,0,0,0,336,0,0,0,0,0,336,0,212,0,0,0,0,0,0,336,213],[313,64,0,0,0,0,0,0,249,24,0,0,0,0,0,0,0,0,0,0,212,179,180,179,0,0,0,0,213,156,156,157,0,0,0,0,1,314,314,314,0,0,1,1,0,336,336,336,0,0,336,0,212,0,0,0,0,0,0,336,213,0,0,0],[208,101,0,0,0,0,0,0,0,129,0,0,0,0,0,0,0,0,124,336,336,158,281,158,0,0,336,0,336,181,179,181,0,0,212,0,213,23,235,23,0,0,0,0,0,1,124,0,0,0,0,0,0,0,336,1,0,0,0,0,0,0,336,0] >;
C2×Dic7⋊C6 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_7\rtimes C_6
% in TeX
G:=Group("C2xDic7:C6");
// GroupNames label
G:=SmallGroup(336,130);
// by ID
G=gap.SmallGroup(336,130);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-7,506,10373,887]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^14=d^6=1,c^2=b^7,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^11,d*c*d^-1=b^7*c>;
// generators/relations