# Extensions 1→N→G→Q→1 with N=C8 and Q=D22

Direct product G=N×Q with N=C8 and Q=D22
dρLabelID
C2×C8×D11176C2xC8xD11352,94

Semidirect products G=N:Q with N=C8 and Q=D22
extensionφ:Q→Aut NdρLabelID
C81D22 = C8⋊D22φ: D22/C11C22 ⊆ Aut C8884+C8:1D22352,103
C82D22 = D4⋊D22φ: D22/C11C22 ⊆ Aut C8884C8:2D22352,106
C83D22 = D88⋊C2φ: D22/C11C22 ⊆ Aut C8884+C8:3D22352,109
C84D22 = D8×D11φ: D22/D11C2 ⊆ Aut C8884+C8:4D22352,105
C85D22 = SD16×D11φ: D22/D11C2 ⊆ Aut C8884C8:5D22352,108
C86D22 = M4(2)×D11φ: D22/D11C2 ⊆ Aut C8884C8:6D22352,101
C87D22 = C2×D88φ: D22/C22C2 ⊆ Aut C8176C8:7D22352,98
C88D22 = C2×C8⋊D11φ: D22/C22C2 ⊆ Aut C8176C8:8D22352,97
C89D22 = C2×C88⋊C2φ: D22/C22C2 ⊆ Aut C8176C8:9D22352,95

Non-split extensions G=N.Q with N=C8 and Q=D22
extensionφ:Q→Aut NdρLabelID
C8.1D22 = C8.D22φ: D22/C11C22 ⊆ Aut C81764-C8.1D22352,104
C8.2D22 = D4.D22φ: D22/C11C22 ⊆ Aut C81764-C8.2D22352,110
C8.3D22 = Q16⋊D11φ: D22/C11C22 ⊆ Aut C81764C8.3D22352,113
C8.4D22 = C11⋊D16φ: D22/D11C2 ⊆ Aut C81764+C8.4D22352,32
C8.5D22 = D8.D11φ: D22/D11C2 ⊆ Aut C81764-C8.5D22352,33
C8.6D22 = C8.6D22φ: D22/D11C2 ⊆ Aut C81764+C8.6D22352,34
C8.7D22 = C11⋊Q32φ: D22/D11C2 ⊆ Aut C83524-C8.7D22352,35
C8.8D22 = D83D11φ: D22/D11C2 ⊆ Aut C81764-C8.8D22352,107
C8.9D22 = Q16×D11φ: D22/D11C2 ⊆ Aut C81764-C8.9D22352,112
C8.10D22 = D885C2φ: D22/D11C2 ⊆ Aut C81764+C8.10D22352,114
C8.11D22 = Q8.D22φ: D22/D11C2 ⊆ Aut C81764C8.11D22352,111
C8.12D22 = D44.C4φ: D22/D11C2 ⊆ Aut C81764C8.12D22352,102
C8.13D22 = D176φ: D22/C22C2 ⊆ Aut C81762+C8.13D22352,5
C8.14D22 = C176⋊C2φ: D22/C22C2 ⊆ Aut C81762C8.14D22352,6
C8.15D22 = Dic88φ: D22/C22C2 ⊆ Aut C83522-C8.15D22352,7
C8.16D22 = C2×Dic44φ: D22/C22C2 ⊆ Aut C8352C8.16D22352,100
C8.17D22 = D887C2φ: D22/C22C2 ⊆ Aut C81762C8.17D22352,99
C8.18D22 = D44.2C4φ: D22/C22C2 ⊆ Aut C81762C8.18D22352,96
C8.19D22 = C16×D11central extension (φ=1)1762C8.19D22352,3
C8.20D22 = D22.C8central extension (φ=1)1762C8.20D22352,4
C8.21D22 = C2×C11⋊C16central extension (φ=1)352C8.21D22352,17
C8.22D22 = C44.C8central extension (φ=1)1762C8.22D22352,18

׿
×
𝔽