Copied to
clipboard

G = S3×A5order 360 = 23·32·5

Direct product of S3 and A5

direct product, non-abelian, not soluble, A-group

Aliases: S3×A5, C3⋊(C2×A5), (C3×A5)⋊1C2, SmallGroup(360,121)

Series: ChiefDerived Lower central Upper central

C1C3S3 — S3×A5
A5C3×A5 — S3×A5
C3×A5 — S3×A5
C1

3C2
15C2
45C2
10C3
20C3
6C5
5C22
45C22
45C22
10S3
15C6
15S3
30S3
30C6
60S3
10C32
6D5
18D5
18C10
6C15
15C23
5A4
5C2×C6
10A4
15D6
15D6
30D6
10C3×S3
10C3×S3
10C3⋊S3
18D10
6D15
6C5×S3
6C3×D5
5C22×S3
15C2×A4
5C3×A4
10S32
6S3×D5
5S3×A4
3C2×A5

Character table of S3×A5

 class 12A2B2C3A3B3C5A5B6A6B10A10B15A15B
 size 131545220401212306036362424
ρ1111111111111111    trivial
ρ21-11-1111111-1-1-111    linear of order 2
ρ32020-12-122-1000-1-1    orthogonal lifted from S3
ρ43-3-113001-5/21+5/2-10-1-5/2-1+5/21+5/21-5/2    orthogonal lifted from C2×A5
ρ533-1-13001+5/21-5/2-101-5/21+5/21-5/21+5/2    orthogonal lifted from A5
ρ633-1-13001-5/21+5/2-101+5/21-5/21+5/21-5/2    orthogonal lifted from A5
ρ73-3-113001+5/21-5/2-10-1+5/2-1-5/21-5/21+5/2    orthogonal lifted from C2×A5
ρ84-400411-1-10-111-1-1    orthogonal lifted from C2×A5
ρ94400411-1-101-1-1-1-1    orthogonal lifted from A5
ρ105-51-15-1-100110000    orthogonal lifted from C2×A5
ρ1155115-1-1001-10000    orthogonal lifted from A5
ρ1260-20-3001-51+51000-1-5/2-1+5/2    orthogonal faithful
ρ1360-20-3001+51-51000-1+5/2-1-5/2    orthogonal faithful
ρ148000-42-1-2-2000011    orthogonal faithful
ρ1510020-5-2100-100000    orthogonal faithful

Permutation representations of S3×A5
On 15 points - transitive group 15T23
Generators in S15
(1 2 3 4 5)(6 7 8 9 10 11 12 13 14 15)
(1 13 8)(2 15 12)(3 7 14)(4 11 6)(5 9 10)

G:=sub<Sym(15)| (1,2,3,4,5)(6,7,8,9,10,11,12,13,14,15), (1,13,8)(2,15,12)(3,7,14)(4,11,6)(5,9,10)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10,11,12,13,14,15), (1,13,8)(2,15,12)(3,7,14)(4,11,6)(5,9,10) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10,11,12,13,14,15)], [(1,13,8),(2,15,12),(3,7,14),(4,11,6),(5,9,10)]])

G:=TransitiveGroup(15,23);

On 18 points - transitive group 18T145
Generators in S18
(2 3)(4 5 6 7 8)(9 10 11 12 13 14 15 16 17 18)
(1 14 13)(2 4 18)(3 9 8)(5 16 17)(6 12 15)(7 10 11)

G:=sub<Sym(18)| (2,3)(4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18), (1,14,13)(2,4,18)(3,9,8)(5,16,17)(6,12,15)(7,10,11)>;

G:=Group( (2,3)(4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18), (1,14,13)(2,4,18)(3,9,8)(5,16,17)(6,12,15)(7,10,11) );

G=PermutationGroup([[(2,3),(4,5,6,7,8),(9,10,11,12,13,14,15,16,17,18)], [(1,14,13),(2,4,18),(3,9,8),(5,16,17),(6,12,15),(7,10,11)]])

G:=TransitiveGroup(18,145);

On 30 points - transitive group 30T85
Generators in S30
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 16 25)(2 22 15)(3 18 21)(4 24 17)(5 14 23)(6 28 13)(7 20 27)(8 30 19)(9 12 29)(10 26 11)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,16,25)(2,22,15)(3,18,21)(4,24,17)(5,14,23)(6,28,13)(7,20,27)(8,30,19)(9,12,29)(10,26,11)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,16,25)(2,22,15)(3,18,21)(4,24,17)(5,14,23)(6,28,13)(7,20,27)(8,30,19)(9,12,29)(10,26,11) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,16,25),(2,22,15),(3,18,21),(4,24,17),(5,14,23),(6,28,13),(7,20,27),(8,30,19),(9,12,29),(10,26,11)]])

G:=TransitiveGroup(30,85);

On 30 points - transitive group 30T94
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 21 14)(2 25 30)(3 19 24)(4 17 18)(5 15 16)(6 29 26)(7 11 28)(8 23 20)(9 13 22)(10 27 12)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,21,14)(2,25,30)(3,19,24)(4,17,18)(5,15,16)(6,29,26)(7,11,28)(8,23,20)(9,13,22)(10,27,12)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,21,14)(2,25,30)(3,19,24)(4,17,18)(5,15,16)(6,29,26)(7,11,28)(8,23,20)(9,13,22)(10,27,12) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,21,14),(2,25,30),(3,19,24),(4,17,18),(5,15,16),(6,29,26),(7,11,28),(8,23,20),(9,13,22),(10,27,12)]])

G:=TransitiveGroup(30,94);

On 30 points - transitive group 30T102
Generators in S30
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 3 29)(4 13 28)(5 20 12)(6 17 19)(7 21 16)(8 10 30)(14 25 27)(15 22 24)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,3,29)(4,13,28)(5,20,12)(6,17,19)(7,21,16)(8,10,30)(14,25,27)(15,22,24)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,3,29)(4,13,28)(5,20,12)(6,17,19)(7,21,16)(8,10,30)(14,25,27)(15,22,24) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,3,29),(4,13,28),(5,20,12),(6,17,19),(7,21,16),(8,10,30),(14,25,27),(15,22,24)]])

G:=TransitiveGroup(30,102);

Polynomial with Galois group S3×A5 over ℚ
actionf(x)Disc(f)
15T23x15+5x14+8x13+7x12+8x11-3x9+7x8-2x7+7x6-2x5-3x4+5x3-2x+1-237·416·4632

Matrix representation of S3×A5 in GL5(𝔽31)

01000
10000
0032921
002103
00100
,
030000
130000
00282129
0029310
003000

G:=sub<GL(5,GF(31))| [0,1,0,0,0,1,0,0,0,0,0,0,3,2,1,0,0,29,10,0,0,0,21,3,0],[0,1,0,0,0,30,30,0,0,0,0,0,28,29,30,0,0,21,3,0,0,0,29,10,0] >;

S3×A5 in GAP, Magma, Sage, TeX

S_3\times A_5
% in TeX

G:=Group("S3xA5");
// GroupNames label

G:=SmallGroup(360,121);
// by ID

G=gap.SmallGroup(360,121);
# by ID

Export

Subgroup lattice of S3×A5 in TeX
Character table of S3×A5 in TeX

׿
×
𝔽