Copied to
clipboard

G = C63⋊C6order 378 = 2·33·7

5th semidirect product of C63 and C6 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C635C6, C73(C9⋊C6), D91(C7⋊C3), (C7×D9)⋊1C3, C633C32C2, C21.6(C3×S3), C91(C2×C7⋊C3), C3.1(S3×C7⋊C3), (C3×C7⋊C3).3S3, SmallGroup(378,13)

Series: Derived Chief Lower central Upper central

C1C63 — C63⋊C6
C1C3C21C63C633C3 — C63⋊C6
C63 — C63⋊C6
C1

Generators and relations for C63⋊C6
 G = < a,b | a63=b6=1, bab-1=a2 >

9C2
21C3
3S3
63C6
7C32
14C9
9C14
3C7⋊C3
21C3×S3
73- 1+2
3S3×C7
9C2×C7⋊C3
2C7⋊C9
7C9⋊C6
3S3×C7⋊C3

Character table of C63⋊C6

 class 123A3B3C6A6B7A7B9A9B9C14A14B21A21B63A63B63C63D63E63F
 size 192212163633364242272766666666
ρ11111111111111111111111    trivial
ρ21-1111-1-111111-1-111111111    linear of order 2
ρ3111ζ3ζ32ζ3ζ32111ζ32ζ31111111111    linear of order 3
ρ41-11ζ32ζ3ζ6ζ65111ζ3ζ32-1-111111111    linear of order 6
ρ51-11ζ3ζ32ζ65ζ6111ζ32ζ3-1-111111111    linear of order 6
ρ6111ζ32ζ3ζ32ζ3111ζ3ζ321111111111    linear of order 3
ρ7202220022-1-1-10022-1-1-1-1-1-1    orthogonal lifted from S3
ρ8202-1+-3-1--30022-1ζ6ζ650022-1-1-1-1-1-1    complex lifted from C3×S3
ρ9202-1--3-1+-30022-1ζ65ζ60022-1-1-1-1-1-1    complex lifted from C3×S3
ρ103330000-1+-7/2-1--7/2300-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ113330000-1--7/2-1+-7/2300-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ123-330000-1--7/2-1+-7/23001+-7/21--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C2×C7⋊C3
ρ133-330000-1+-7/2-1--7/23001--7/21+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C2×C7⋊C3
ρ1460-300006600000-3-3000000    orthogonal lifted from C9⋊C6
ρ156060000-1+-7-1--7-30000-1--7-1+-71+-7/21+-7/21--7/21--7/21--7/21+-7/2    complex lifted from S3×C7⋊C3
ρ166060000-1--7-1+-7-30000-1+-7-1--71--7/21--7/21+-7/21+-7/21+-7/21--7/2    complex lifted from S3×C7⋊C3
ρ1760-30000-1+-7-1--7000001+-7/21--7/298ζ7598ζ7397ζ7697ζ7394ζ7594ζ7392ζ7692ζ7598ζ7698ζ7597ζ7597ζ7394ζ7694ζ7592ζ7692ζ73ζ98ζ7498ζ7294ζ7294ζ792ζ7292ζ79ζ749ζ795ζ7295ζ794ζ7494ζ792ζ7492ζ729ζ749ζ7297ζ7497ζ7295ζ7495ζ792ζ7292ζ79ζ749ζ7ζ97ζ7597ζ7395ζ7695ζ7392ζ7692ζ759ζ769ζ73    complex faithful
ρ1860-30000-1+-7-1--7000001+-7/21--7/2ζ97ζ7597ζ7395ζ7695ζ7392ζ7692ζ759ζ769ζ7398ζ7598ζ7397ζ7697ζ7394ζ7594ζ7392ζ7692ζ7597ζ7497ζ7295ζ7495ζ792ζ7292ζ79ζ749ζ7ζ98ζ7498ζ7294ζ7294ζ792ζ7292ζ79ζ749ζ795ζ7295ζ794ζ7494ζ792ζ7492ζ729ζ749ζ7298ζ7698ζ7597ζ7597ζ7394ζ7694ζ7592ζ7692ζ73    complex faithful
ρ1960-30000-1+-7-1--7000001+-7/21--7/298ζ7698ζ7597ζ7597ζ7394ζ7694ζ7592ζ7692ζ73ζ97ζ7597ζ7395ζ7695ζ7392ζ7692ζ759ζ769ζ7395ζ7295ζ794ζ7494ζ792ζ7492ζ729ζ749ζ7297ζ7497ζ7295ζ7495ζ792ζ7292ζ79ζ749ζ7ζ98ζ7498ζ7294ζ7294ζ792ζ7292ζ79ζ749ζ798ζ7598ζ7397ζ7697ζ7394ζ7594ζ7392ζ7692ζ75    complex faithful
ρ2060-30000-1--7-1+-7000001--7/21+-7/297ζ7497ζ7295ζ7495ζ792ζ7292ζ79ζ749ζ7ζ98ζ7498ζ7294ζ7294ζ792ζ7292ζ79ζ749ζ7ζ97ζ7597ζ7395ζ7695ζ7392ζ7692ζ759ζ769ζ7398ζ7598ζ7397ζ7697ζ7394ζ7594ζ7392ζ7692ζ7598ζ7698ζ7597ζ7597ζ7394ζ7694ζ7592ζ7692ζ7395ζ7295ζ794ζ7494ζ792ζ7492ζ729ζ749ζ72    complex faithful
ρ2160-30000-1--7-1+-7000001--7/21+-7/295ζ7295ζ794ζ7494ζ792ζ7492ζ729ζ749ζ7297ζ7497ζ7295ζ7495ζ792ζ7292ζ79ζ749ζ798ζ7698ζ7597ζ7597ζ7394ζ7694ζ7592ζ7692ζ73ζ97ζ7597ζ7395ζ7695ζ7392ζ7692ζ759ζ769ζ7398ζ7598ζ7397ζ7697ζ7394ζ7594ζ7392ζ7692ζ75ζ98ζ7498ζ7294ζ7294ζ792ζ7292ζ79ζ749ζ7    complex faithful
ρ2260-30000-1--7-1+-7000001--7/21+-7/2ζ98ζ7498ζ7294ζ7294ζ792ζ7292ζ79ζ749ζ795ζ7295ζ794ζ7494ζ792ζ7492ζ729ζ749ζ7298ζ7598ζ7397ζ7697ζ7394ζ7594ζ7392ζ7692ζ7598ζ7698ζ7597ζ7597ζ7394ζ7694ζ7592ζ7692ζ73ζ97ζ7597ζ7395ζ7695ζ7392ζ7692ζ759ζ769ζ7397ζ7497ζ7295ζ7495ζ792ζ7292ζ79ζ749ζ7    complex faithful

Smallest permutation representation of C63⋊C6
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
(2 33 17 9 5 3)(4 34 49 25 13 7)(6 35 18 41 21 11)(8 36 50 57 29 15)(10 37 19)(12 38 51 26 45 23)(14 39 20 42 53 27)(16 40 52 58 61 31)(22 43)(24 44 54 59 30 47)(28 46 55)(32 48 56 60 62 63)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (2,33,17,9,5,3)(4,34,49,25,13,7)(6,35,18,41,21,11)(8,36,50,57,29,15)(10,37,19)(12,38,51,26,45,23)(14,39,20,42,53,27)(16,40,52,58,61,31)(22,43)(24,44,54,59,30,47)(28,46,55)(32,48,56,60,62,63)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (2,33,17,9,5,3)(4,34,49,25,13,7)(6,35,18,41,21,11)(8,36,50,57,29,15)(10,37,19)(12,38,51,26,45,23)(14,39,20,42,53,27)(16,40,52,58,61,31)(22,43)(24,44,54,59,30,47)(28,46,55)(32,48,56,60,62,63) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)], [(2,33,17,9,5,3),(4,34,49,25,13,7),(6,35,18,41,21,11),(8,36,50,57,29,15),(10,37,19),(12,38,51,26,45,23),(14,39,20,42,53,27),(16,40,52,58,61,31),(22,43),(24,44,54,59,30,47),(28,46,55),(32,48,56,60,62,63)]])

Matrix representation of C63⋊C6 in GL6(𝔽2)

010010
100101
011011
011001
000111
101111
,
101010
000110
010010
001000
000011
000010

G:=sub<GL(6,GF(2))| [0,1,0,0,0,1,1,0,1,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1],[1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,1,1,0,1,1,0,0,0,0,1,0] >;

C63⋊C6 in GAP, Magma, Sage, TeX

C_{63}\rtimes C_6
% in TeX

G:=Group("C63:C6");
// GroupNames label

G:=SmallGroup(378,13);
// by ID

G=gap.SmallGroup(378,13);
# by ID

G:=PCGroup([5,-2,-3,-3,-7,-3,2072,997,642,368,6304]);
// Polycyclic

G:=Group<a,b|a^63=b^6=1,b*a*b^-1=a^2>;
// generators/relations

Export

Subgroup lattice of C63⋊C6 in TeX
Character table of C63⋊C6 in TeX

׿
×
𝔽