Copied to
clipboard

G = C95F7order 378 = 2·33·7

The semidirect product of C9 and F7 acting via F7/C7⋊C3=C2

metacyclic, supersoluble, monomial, A-group

Aliases: C95F7, C632C6, D632C3, C7⋊C3⋊D9, C7⋊(C3×D9), C21.3(C3×S3), C3.3(C3⋊F7), (C9×C7⋊C3)⋊1C2, (C3×C7⋊C3).5S3, SmallGroup(378,20)

Series: Derived Chief Lower central Upper central

C1C63 — C95F7
C1C3C21C63C9×C7⋊C3 — C95F7
C63 — C95F7
C1

Generators and relations for C95F7
 G = < a,b,c | a9=b7=c6=1, ab=ba, cac-1=a-1, cbc-1=b5 >

63C2
7C3
14C3
21S3
63C6
7C32
14C9
9D7
2C7⋊C3
7D9
21C3×S3
7C3×C9
3D21
9F7
2C7⋊C9
7C3×D9
3C3⋊F7

Character table of C95F7

 class 123A3B3C3D3E6A6B79A9B9C9D9E9F9G9H9I21A21B63A63B63C63D63E63F
 size 16327714146363622214141414141466666666
ρ1111111111111111111111111111    trivial
ρ21-111111-1-1111111111111111111    linear of order 2
ρ3111ζ3ζ32ζ3ζ32ζ3ζ321111ζ32ζ32ζ3ζ3ζ3ζ3211111111    linear of order 3
ρ41-11ζ32ζ3ζ32ζ3ζ6ζ651111ζ3ζ3ζ32ζ32ζ32ζ311111111    linear of order 6
ρ51-11ζ3ζ32ζ3ζ32ζ65ζ61111ζ32ζ32ζ3ζ3ζ3ζ3211111111    linear of order 6
ρ6111ζ32ζ3ζ32ζ3ζ32ζ31111ζ3ζ3ζ32ζ32ζ32ζ311111111    linear of order 3
ρ72022222002-1-1-1-1-1-1-1-1-122-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-122-1-1002ζ9594ζ989ζ9792ζ9792ζ9594ζ989ζ9792ζ9594ζ989-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ920-122-1-1002ζ989ζ9792ζ9594ζ9594ζ989ζ9792ζ9594ζ989ζ9792-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ1020-122-1-1002ζ9792ζ9594ζ989ζ989ζ9792ζ9594ζ989ζ9792ζ9594-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ11202-1--3-1+-3-1--3-1+-3002-1-1-1ζ65ζ65ζ6ζ6ζ6ζ6522-1-1-1-1-1-1    complex lifted from C3×S3
ρ12202-1+-3-1--3-1+-3-1--3002-1-1-1ζ6ζ6ζ65ζ65ζ65ζ622-1-1-1-1-1-1    complex lifted from C3×S3
ρ1320-1-1--3-1+-3ζ6ζ65002ζ989ζ9792ζ9594ζ9897ζ9492ζ9894ζ929ζ9795ζ959-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792    complex lifted from C3×D9
ρ1420-1-1+-3-1--3ζ65ζ6002ζ9792ζ9594ζ989ζ9795ζ9894ζ9897ζ9492ζ959ζ929-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594    complex lifted from C3×D9
ρ1520-1-1--3-1+-3ζ6ζ65002ζ9792ζ9594ζ989ζ9492ζ959ζ929ζ9795ζ9894ζ9897-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594    complex lifted from C3×D9
ρ1620-1-1+-3-1--3ζ65ζ6002ζ989ζ9792ζ9594ζ929ζ9795ζ959ζ9897ζ9492ζ9894-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792    complex lifted from C3×D9
ρ1720-1-1--3-1+-3ζ6ζ65002ζ9594ζ989ζ9792ζ959ζ9897ζ9795ζ9894ζ929ζ9492-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989    complex lifted from C3×D9
ρ1820-1-1+-3-1--3ζ65ζ6002ζ9594ζ989ζ9792ζ9894ζ929ζ9492ζ959ζ9897ζ9795-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989    complex lifted from C3×D9
ρ19606000000-1666000000-1-1-1-1-1-1-1-1    orthogonal lifted from F7
ρ20606000000-1-3-3-3000000-1-11+21/21+21/21-21/21-21/21-21/21+21/2    orthogonal lifted from C3⋊F7
ρ21606000000-1-3-3-3000000-1-11-21/21-21/21+21/21+21/21+21/21-21/2    orthogonal lifted from C3⋊F7
ρ2260-3000000-198+3ζ997+3ζ9295+3ζ940000001+21/21-21/2ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ794ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7997ζ7697ζ7597ζ739792ζ7692ζ7592ζ7395ζ7495ζ7295ζ79594ζ7494ζ7294ζ798ζ7498ζ7298ζ7989ζ749ζ729ζ797ζ7497ζ7297ζ79792ζ7492ζ7292ζ7    orthogonal faithful
ρ2360-3000000-195+3ζ9498+3ζ997+3ζ920000001+21/21-21/297ζ7497ζ7297ζ79792ζ7492ζ7292ζ7ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ79498ζ7498ζ7298ζ7989ζ749ζ729ζ797ζ7697ζ7597ζ739792ζ7692ζ7592ζ7395ζ7495ζ7295ζ79594ζ7494ζ7294ζ7ζ98ζ7498ζ7298ζ79ζ749ζ729ζ79    orthogonal faithful
ρ2460-3000000-197+3ζ9295+3ζ9498+3ζ90000001+21/21-21/2ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7997ζ7497ζ7297ζ79792ζ7492ζ7292ζ795ζ7495ζ7295ζ79594ζ7494ζ7294ζ798ζ7498ζ7298ζ7989ζ749ζ729ζ797ζ7697ζ7597ζ739792ζ7692ζ7592ζ73ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ794    orthogonal faithful
ρ2560-3000000-195+3ζ9498+3ζ997+3ζ920000001-21/21+21/297ζ7697ζ7597ζ739792ζ7692ζ7592ζ7395ζ7495ζ7295ζ79594ζ7494ζ7294ζ7ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7997ζ7497ζ7297ζ79792ζ7492ζ7292ζ7ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ79498ζ7498ζ7298ζ7989ζ749ζ729ζ7    orthogonal faithful
ρ2660-3000000-197+3ζ9295+3ζ9498+3ζ90000001-21/21+21/298ζ7498ζ7298ζ7989ζ749ζ729ζ797ζ7697ζ7597ζ739792ζ7692ζ7592ζ73ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ794ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7997ζ7497ζ7297ζ79792ζ7492ζ7292ζ795ζ7495ζ7295ζ79594ζ7494ζ7294ζ7    orthogonal faithful
ρ2760-3000000-198+3ζ997+3ζ9295+3ζ940000001-21/21+21/295ζ7495ζ7295ζ79594ζ7494ζ7294ζ798ζ7498ζ7298ζ7989ζ749ζ729ζ797ζ7497ζ7297ζ79792ζ7492ζ7292ζ7ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ794ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7997ζ7697ζ7597ζ739792ζ7692ζ7592ζ73    orthogonal faithful

Smallest permutation representation of C95F7
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 30 46 24 59 14 45)(2 31 47 25 60 15 37)(3 32 48 26 61 16 38)(4 33 49 27 62 17 39)(5 34 50 19 63 18 40)(6 35 51 20 55 10 41)(7 36 52 21 56 11 42)(8 28 53 22 57 12 43)(9 29 54 23 58 13 44)
(2 9)(3 8)(4 7)(5 6)(10 34 20 50 41 63)(11 33 21 49 42 62)(12 32 22 48 43 61)(13 31 23 47 44 60)(14 30 24 46 45 59)(15 29 25 54 37 58)(16 28 26 53 38 57)(17 36 27 52 39 56)(18 35 19 51 40 55)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,30,46,24,59,14,45)(2,31,47,25,60,15,37)(3,32,48,26,61,16,38)(4,33,49,27,62,17,39)(5,34,50,19,63,18,40)(6,35,51,20,55,10,41)(7,36,52,21,56,11,42)(8,28,53,22,57,12,43)(9,29,54,23,58,13,44), (2,9)(3,8)(4,7)(5,6)(10,34,20,50,41,63)(11,33,21,49,42,62)(12,32,22,48,43,61)(13,31,23,47,44,60)(14,30,24,46,45,59)(15,29,25,54,37,58)(16,28,26,53,38,57)(17,36,27,52,39,56)(18,35,19,51,40,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,30,46,24,59,14,45)(2,31,47,25,60,15,37)(3,32,48,26,61,16,38)(4,33,49,27,62,17,39)(5,34,50,19,63,18,40)(6,35,51,20,55,10,41)(7,36,52,21,56,11,42)(8,28,53,22,57,12,43)(9,29,54,23,58,13,44), (2,9)(3,8)(4,7)(5,6)(10,34,20,50,41,63)(11,33,21,49,42,62)(12,32,22,48,43,61)(13,31,23,47,44,60)(14,30,24,46,45,59)(15,29,25,54,37,58)(16,28,26,53,38,57)(17,36,27,52,39,56)(18,35,19,51,40,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,30,46,24,59,14,45),(2,31,47,25,60,15,37),(3,32,48,26,61,16,38),(4,33,49,27,62,17,39),(5,34,50,19,63,18,40),(6,35,51,20,55,10,41),(7,36,52,21,56,11,42),(8,28,53,22,57,12,43),(9,29,54,23,58,13,44)], [(2,9),(3,8),(4,7),(5,6),(10,34,20,50,41,63),(11,33,21,49,42,62),(12,32,22,48,43,61),(13,31,23,47,44,60),(14,30,24,46,45,59),(15,29,25,54,37,58),(16,28,26,53,38,57),(17,36,27,52,39,56),(18,35,19,51,40,55)]])

Matrix representation of C95F7 in GL8(𝔽127)

922000000
10531000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
00126126126126126126
00100000
00010000
00001000
00000100
00000010
,
019000000
190000000
00100000
00000001
00000100
00010000
00126126126126126126
00000010

G:=sub<GL(8,GF(127))| [9,105,0,0,0,0,0,0,22,31,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,126,1,0,0,0,0,0,0,126,0,1,0,0,0,0,0,126,0,0,1,0,0,0,0,126,0,0,0,1,0,0,0,126,0,0,0,0,1,0,0,126,0,0,0,0,0],[0,19,0,0,0,0,0,0,19,0,0,0,0,0,0,0,0,0,1,0,0,0,126,0,0,0,0,0,0,1,126,0,0,0,0,0,0,0,126,0,0,0,0,0,1,0,126,0,0,0,0,0,0,0,126,1,0,0,0,1,0,0,126,0] >;

C95F7 in GAP, Magma, Sage, TeX

C_9\rtimes_5F_7
% in TeX

G:=Group("C9:5F7");
// GroupNames label

G:=SmallGroup(378,20);
// by ID

G=gap.SmallGroup(378,20);
# by ID

G:=PCGroup([5,-2,-3,-3,-7,-3,2072,642,2163,368,6304]);
// Polycyclic

G:=Group<a,b,c|a^9=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C95F7 in TeX
Character table of C95F7 in TeX

׿
×
𝔽