extension | φ:Q→Aut N | d | ρ | Label | ID |
C15:(C2xDic3) = S3xC3:F5 | φ: C2xDic3/C3 → C2xC4 ⊆ Aut C15 | 30 | 8 | C15:(C2xDic3) | 360,128 |
C15:2(C2xDic3) = C2xC32:3F5 | φ: C2xDic3/C6 → C4 ⊆ Aut C15 | 90 | | C15:2(C2xDic3) | 360,147 |
C15:3(C2xDic3) = C6xC3:F5 | φ: C2xDic3/C6 → C4 ⊆ Aut C15 | 60 | 4 | C15:3(C2xDic3) | 360,146 |
C15:4(C2xDic3) = D5xC3:Dic3 | φ: C2xDic3/C6 → C22 ⊆ Aut C15 | 180 | | C15:4(C2xDic3) | 360,65 |
C15:5(C2xDic3) = S3xDic15 | φ: C2xDic3/C6 → C22 ⊆ Aut C15 | 120 | 4- | C15:5(C2xDic3) | 360,78 |
C15:6(C2xDic3) = D30.S3 | φ: C2xDic3/C6 → C22 ⊆ Aut C15 | 120 | 4 | C15:6(C2xDic3) | 360,84 |
C15:7(C2xDic3) = Dic3xD15 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C15 | 120 | 4- | C15:7(C2xDic3) | 360,77 |
C15:8(C2xDic3) = C3xD5xDic3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C15 | 60 | 4 | C15:8(C2xDic3) | 360,58 |
C15:9(C2xDic3) = C5xS3xDic3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C15 | 120 | 4 | C15:9(C2xDic3) | 360,72 |
C15:10(C2xDic3) = C2xC3:Dic15 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C15 | 360 | | C15:10(C2xDic3) | 360,113 |
C15:11(C2xDic3) = C6xDic15 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C15 | 120 | | C15:11(C2xDic3) | 360,103 |
C15:12(C2xDic3) = C10xC3:Dic3 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C15 | 360 | | C15:12(C2xDic3) | 360,108 |