Extensions 1→N→G→Q→1 with N=C15 and Q=C2xDic3

Direct product G=NxQ with N=C15 and Q=C2xDic3
dρLabelID
Dic3xC30120Dic3xC30360,98

Semidirect products G=N:Q with N=C15 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C15:(C2xDic3) = S3xC3:F5φ: C2xDic3/C3C2xC4 ⊆ Aut C15308C15:(C2xDic3)360,128
C15:2(C2xDic3) = C2xC32:3F5φ: C2xDic3/C6C4 ⊆ Aut C1590C15:2(C2xDic3)360,147
C15:3(C2xDic3) = C6xC3:F5φ: C2xDic3/C6C4 ⊆ Aut C15604C15:3(C2xDic3)360,146
C15:4(C2xDic3) = D5xC3:Dic3φ: C2xDic3/C6C22 ⊆ Aut C15180C15:4(C2xDic3)360,65
C15:5(C2xDic3) = S3xDic15φ: C2xDic3/C6C22 ⊆ Aut C151204-C15:5(C2xDic3)360,78
C15:6(C2xDic3) = D30.S3φ: C2xDic3/C6C22 ⊆ Aut C151204C15:6(C2xDic3)360,84
C15:7(C2xDic3) = Dic3xD15φ: C2xDic3/Dic3C2 ⊆ Aut C151204-C15:7(C2xDic3)360,77
C15:8(C2xDic3) = C3xD5xDic3φ: C2xDic3/Dic3C2 ⊆ Aut C15604C15:8(C2xDic3)360,58
C15:9(C2xDic3) = C5xS3xDic3φ: C2xDic3/Dic3C2 ⊆ Aut C151204C15:9(C2xDic3)360,72
C15:10(C2xDic3) = C2xC3:Dic15φ: C2xDic3/C2xC6C2 ⊆ Aut C15360C15:10(C2xDic3)360,113
C15:11(C2xDic3) = C6xDic15φ: C2xDic3/C2xC6C2 ⊆ Aut C15120C15:11(C2xDic3)360,103
C15:12(C2xDic3) = C10xC3:Dic3φ: C2xDic3/C2xC6C2 ⊆ Aut C15360C15:12(C2xDic3)360,108

Non-split extensions G=N.Q with N=C15 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C15.1(C2xDic3) = C2xC9:F5φ: C2xDic3/C6C4 ⊆ Aut C15904C15.1(C2xDic3)360,44
C15.2(C2xDic3) = D5xDic9φ: C2xDic3/C6C22 ⊆ Aut C151804-C15.2(C2xDic3)360,11
C15.3(C2xDic3) = C2xDic45φ: C2xDic3/C2xC6C2 ⊆ Aut C15360C15.3(C2xDic3)360,28
C15.4(C2xDic3) = C10xDic9φ: C2xDic3/C2xC6C2 ⊆ Aut C15360C15.4(C2xDic3)360,23

׿
x
:
Z
F
o
wr
Q
<