Copied to
clipboard

G = C52.D4order 416 = 25·13

8th non-split extension by C52 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C52.8D4, C23.Dic13, (C2×C4).3D26, (C2×D4).2D13, (D4×C26).2C2, C52.4C43C2, C133(C4.D4), (C22×C26).2C4, C4.13(C13⋊D4), (C2×C52).17C22, C26.25(C22⋊C4), C2.4(C23.D13), C22.2(C2×Dic13), (C2×C26).48(C2×C4), SmallGroup(416,40)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C52.D4
C1C13C26C52C2×C52C52.4C4 — C52.D4
C13C26C2×C26 — C52.D4
C1C2C2×C4C2×D4

Generators and relations for C52.D4
 G = < a,b,c | a52=1, b4=a26, c2=a13, bab-1=a-1, cac-1=a25, cbc-1=a39b3 >

2C2
4C2
4C2
2C22
2C22
4C22
4C22
2C26
4C26
4C26
2D4
2D4
26C8
26C8
2C2×C26
2C2×C26
4C2×C26
4C2×C26
13M4(2)
13M4(2)
2D4×C13
2C132C8
2C132C8
2D4×C13
13C4.D4

Smallest permutation representation of C52.D4
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 68 14 55 27 94 40 81)(2 67 15 54 28 93 41 80)(3 66 16 53 29 92 42 79)(4 65 17 104 30 91 43 78)(5 64 18 103 31 90 44 77)(6 63 19 102 32 89 45 76)(7 62 20 101 33 88 46 75)(8 61 21 100 34 87 47 74)(9 60 22 99 35 86 48 73)(10 59 23 98 36 85 49 72)(11 58 24 97 37 84 50 71)(12 57 25 96 38 83 51 70)(13 56 26 95 39 82 52 69)
(1 94 14 55 27 68 40 81)(2 67 15 80 28 93 41 54)(3 92 16 53 29 66 42 79)(4 65 17 78 30 91 43 104)(5 90 18 103 31 64 44 77)(6 63 19 76 32 89 45 102)(7 88 20 101 33 62 46 75)(8 61 21 74 34 87 47 100)(9 86 22 99 35 60 48 73)(10 59 23 72 36 85 49 98)(11 84 24 97 37 58 50 71)(12 57 25 70 38 83 51 96)(13 82 26 95 39 56 52 69)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,68,14,55,27,94,40,81)(2,67,15,54,28,93,41,80)(3,66,16,53,29,92,42,79)(4,65,17,104,30,91,43,78)(5,64,18,103,31,90,44,77)(6,63,19,102,32,89,45,76)(7,62,20,101,33,88,46,75)(8,61,21,100,34,87,47,74)(9,60,22,99,35,86,48,73)(10,59,23,98,36,85,49,72)(11,58,24,97,37,84,50,71)(12,57,25,96,38,83,51,70)(13,56,26,95,39,82,52,69), (1,94,14,55,27,68,40,81)(2,67,15,80,28,93,41,54)(3,92,16,53,29,66,42,79)(4,65,17,78,30,91,43,104)(5,90,18,103,31,64,44,77)(6,63,19,76,32,89,45,102)(7,88,20,101,33,62,46,75)(8,61,21,74,34,87,47,100)(9,86,22,99,35,60,48,73)(10,59,23,72,36,85,49,98)(11,84,24,97,37,58,50,71)(12,57,25,70,38,83,51,96)(13,82,26,95,39,56,52,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,68,14,55,27,94,40,81)(2,67,15,54,28,93,41,80)(3,66,16,53,29,92,42,79)(4,65,17,104,30,91,43,78)(5,64,18,103,31,90,44,77)(6,63,19,102,32,89,45,76)(7,62,20,101,33,88,46,75)(8,61,21,100,34,87,47,74)(9,60,22,99,35,86,48,73)(10,59,23,98,36,85,49,72)(11,58,24,97,37,84,50,71)(12,57,25,96,38,83,51,70)(13,56,26,95,39,82,52,69), (1,94,14,55,27,68,40,81)(2,67,15,80,28,93,41,54)(3,92,16,53,29,66,42,79)(4,65,17,78,30,91,43,104)(5,90,18,103,31,64,44,77)(6,63,19,76,32,89,45,102)(7,88,20,101,33,62,46,75)(8,61,21,74,34,87,47,100)(9,86,22,99,35,60,48,73)(10,59,23,72,36,85,49,98)(11,84,24,97,37,58,50,71)(12,57,25,70,38,83,51,96)(13,82,26,95,39,56,52,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,68,14,55,27,94,40,81),(2,67,15,54,28,93,41,80),(3,66,16,53,29,92,42,79),(4,65,17,104,30,91,43,78),(5,64,18,103,31,90,44,77),(6,63,19,102,32,89,45,76),(7,62,20,101,33,88,46,75),(8,61,21,100,34,87,47,74),(9,60,22,99,35,86,48,73),(10,59,23,98,36,85,49,72),(11,58,24,97,37,84,50,71),(12,57,25,96,38,83,51,70),(13,56,26,95,39,82,52,69)], [(1,94,14,55,27,68,40,81),(2,67,15,80,28,93,41,54),(3,92,16,53,29,66,42,79),(4,65,17,78,30,91,43,104),(5,90,18,103,31,64,44,77),(6,63,19,76,32,89,45,102),(7,88,20,101,33,62,46,75),(8,61,21,74,34,87,47,100),(9,86,22,99,35,60,48,73),(10,59,23,72,36,85,49,98),(11,84,24,97,37,58,50,71),(12,57,25,70,38,83,51,96),(13,82,26,95,39,56,52,69)]])

71 conjugacy classes

class 1 2A2B2C2D4A4B8A8B8C8D13A···13F26A···26R26S···26AP52A···52L
order1222244888813···1326···2626···2652···52
size1124422525252522···22···24···44···4

71 irreducible representations

dim11112222244
type++++++-+
imageC1C2C2C4D4D13D26Dic13C13⋊D4C4.D4C52.D4
kernelC52.D4C52.4C4D4×C26C22×C26C52C2×D4C2×C4C23C4C13C1
# reps12142661224112

Matrix representation of C52.D4 in GL4(𝔽313) generated by

45750120
23530993101
000280
00330
,
11059306291
000312
0100
243181252203
,
20313615922
0001
0100
7013261110
G:=sub<GL(4,GF(313))| [4,235,0,0,57,309,0,0,50,93,0,33,120,101,280,0],[110,0,0,243,59,0,1,181,306,0,0,252,291,312,0,203],[203,0,0,70,136,0,1,132,159,0,0,61,22,1,0,110] >;

C52.D4 in GAP, Magma, Sage, TeX

C_{52}.D_4
% in TeX

G:=Group("C52.D4");
// GroupNames label

G:=SmallGroup(416,40);
// by ID

G=gap.SmallGroup(416,40);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,24,121,188,86,579,13829]);
// Polycyclic

G:=Group<a,b,c|a^52=1,b^4=a^26,c^2=a^13,b*a*b^-1=a^-1,c*a*c^-1=a^25,c*b*c^-1=a^39*b^3>;
// generators/relations

Export

Subgroup lattice of C52.D4 in TeX

׿
×
𝔽