Extensions 1→N→G→Q→1 with N=C3:Dic3 and Q=C2xC6

Direct product G=NxQ with N=C3:Dic3 and Q=C2xC6
dρLabelID
C2xC6xC3:Dic3144C2xC6xC3:Dic3432,718

Semidirect products G=N:Q with N=C3:Dic3 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
C3:Dic3:1(C2xC6) = D4xC32:C6φ: C2xC6/C2C6 ⊆ Out C3:Dic33612+C3:Dic3:1(C2xC6)432,360
C3:Dic3:2(C2xC6) = C2xHe3:6D4φ: C2xC6/C2C6 ⊆ Out C3:Dic372C3:Dic3:2(C2xC6)432,377
C3:Dic3:3(C2xC6) = C3xS3xC3:D4φ: C2xC6/C3C22 ⊆ Out C3:Dic3244C3:Dic3:3(C2xC6)432,658
C3:Dic3:4(C2xC6) = C2xC4xC32:C6φ: C2xC6/C22C3 ⊆ Out C3:Dic372C3:Dic3:4(C2xC6)432,349
C3:Dic3:5(C2xC6) = C22xC32:C12φ: C2xC6/C22C3 ⊆ Out C3:Dic3144C3:Dic3:5(C2xC6)432,376
C3:Dic3:6(C2xC6) = S32xC12φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3:6(C2xC6)432,648
C3:Dic3:7(C2xC6) = C3xD6:D6φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3:7(C2xC6)432,650
C3:Dic3:8(C2xC6) = S3xC6xDic3φ: C2xC6/C6C2 ⊆ Out C3:Dic348C3:Dic3:8(C2xC6)432,651
C3:Dic3:9(C2xC6) = C6xD6:S3φ: C2xC6/C6C2 ⊆ Out C3:Dic348C3:Dic3:9(C2xC6)432,655
C3:Dic3:10(C2xC6) = C3xD4xC3:S3φ: C2xC6/C6C2 ⊆ Out C3:Dic372C3:Dic3:10(C2xC6)432,714
C3:Dic3:11(C2xC6) = C6xC32:7D4φ: C2xC6/C6C2 ⊆ Out C3:Dic372C3:Dic3:11(C2xC6)432,719
C3:Dic3:12(C2xC6) = C3:S3xC2xC12φ: trivial image144C3:Dic3:12(C2xC6)432,711

Non-split extensions G=N.Q with N=C3:Dic3 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
C3:Dic3.1(C2xC6) = C2xHe3:3Q8φ: C2xC6/C2C6 ⊆ Out C3:Dic3144C3:Dic3.1(C2xC6)432,348
C3:Dic3.2(C2xC6) = C62.36D6φ: C2xC6/C2C6 ⊆ Out C3:Dic3726C3:Dic3.2(C2xC6)432,351
C3:Dic3.3(C2xC6) = C62.13D6φ: C2xC6/C2C6 ⊆ Out C3:Dic37212-C3:Dic3.3(C2xC6)432,361
C3:Dic3.4(C2xC6) = Q8xC32:C6φ: C2xC6/C2C6 ⊆ Out C3:Dic37212-C3:Dic3.4(C2xC6)432,368
C3:Dic3.5(C2xC6) = C3xC32:D8φ: C2xC6/C3C22 ⊆ Out C3:Dic3244C3:Dic3.5(C2xC6)432,576
C3:Dic3.6(C2xC6) = C3xC32:2SD16φ: C2xC6/C3C22 ⊆ Out C3:Dic3244C3:Dic3.6(C2xC6)432,577
C3:Dic3.7(C2xC6) = C3xC32:Q16φ: C2xC6/C3C22 ⊆ Out C3:Dic3484C3:Dic3.7(C2xC6)432,578
C3:Dic3.8(C2xC6) = C3xS3xDic6φ: C2xC6/C3C22 ⊆ Out C3:Dic3484C3:Dic3.8(C2xC6)432,642
C3:Dic3.9(C2xC6) = C3xD12:5S3φ: C2xC6/C3C22 ⊆ Out C3:Dic3484C3:Dic3.9(C2xC6)432,643
C3:Dic3.10(C2xC6) = C3xD6.3D6φ: C2xC6/C3C22 ⊆ Out C3:Dic3244C3:Dic3.10(C2xC6)432,652
C3:Dic3.11(C2xC6) = (Q8xHe3):C2φ: C2xC6/C22C3 ⊆ Out C3:Dic37212+C3:Dic3.11(C2xC6)432,369
C3:Dic3.12(C2xC6) = C3xC3:S3:3C8φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3.12(C2xC6)432,628
C3:Dic3.13(C2xC6) = C3xC32:M4(2)φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3.13(C2xC6)432,629
C3:Dic3.14(C2xC6) = C6xC32:2C8φ: C2xC6/C6C2 ⊆ Out C3:Dic348C3:Dic3.14(C2xC6)432,632
C3:Dic3.15(C2xC6) = C3xC62.C4φ: C2xC6/C6C2 ⊆ Out C3:Dic3244C3:Dic3.15(C2xC6)432,633
C3:Dic3.16(C2xC6) = C3xD12:S3φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3.16(C2xC6)432,644
C3:Dic3.17(C2xC6) = C3xDic3.D6φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3.17(C2xC6)432,645
C3:Dic3.18(C2xC6) = C3xD6.D6φ: C2xC6/C6C2 ⊆ Out C3:Dic3484C3:Dic3.18(C2xC6)432,646
C3:Dic3.19(C2xC6) = C3xD6.4D6φ: C2xC6/C6C2 ⊆ Out C3:Dic3244C3:Dic3.19(C2xC6)432,653
C3:Dic3.20(C2xC6) = C6xC32:2Q8φ: C2xC6/C6C2 ⊆ Out C3:Dic348C3:Dic3.20(C2xC6)432,657
C3:Dic3.21(C2xC6) = C6xC32:4Q8φ: C2xC6/C6C2 ⊆ Out C3:Dic3144C3:Dic3.21(C2xC6)432,710
C3:Dic3.22(C2xC6) = C3xC12.59D6φ: C2xC6/C6C2 ⊆ Out C3:Dic372C3:Dic3.22(C2xC6)432,713
C3:Dic3.23(C2xC6) = C3xC12.D6φ: C2xC6/C6C2 ⊆ Out C3:Dic372C3:Dic3.23(C2xC6)432,715
C3:Dic3.24(C2xC6) = C3xQ8xC3:S3φ: C2xC6/C6C2 ⊆ Out C3:Dic3144C3:Dic3.24(C2xC6)432,716
C3:Dic3.25(C2xC6) = C3xC12.26D6φ: trivial image144C3:Dic3.25(C2xC6)432,717

׿
x
:
Z
F
o
wr
Q
<