extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C2×C3⋊S3) = C36.17D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.1(C2xC3:S3) | 432,190 |
C12.2(C2×C3⋊S3) = C36.18D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.2(C2xC3:S3) | 432,191 |
C12.3(C2×C3⋊S3) = C36.19D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 432 | | C12.3(C2xC3:S3) | 432,194 |
C12.4(C2×C3⋊S3) = C36.20D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.4(C2xC3:S3) | 432,195 |
C12.5(C2×C3⋊S3) = D4×C9⋊S3 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 108 | | C12.5(C2xC3:S3) | 432,388 |
C12.6(C2×C3⋊S3) = C36.27D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.6(C2xC3:S3) | 432,389 |
C12.7(C2×C3⋊S3) = Q8×C9⋊S3 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.7(C2xC3:S3) | 432,392 |
C12.8(C2×C3⋊S3) = C36.29D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.8(C2xC3:S3) | 432,393 |
C12.9(C2×C3⋊S3) = C33⋊6D8 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.9(C2xC3:S3) | 432,436 |
C12.10(C2×C3⋊S3) = C33⋊8D8 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 72 | | C12.10(C2xC3:S3) | 432,438 |
C12.11(C2×C3⋊S3) = C33⋊12SD16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.11(C2xC3:S3) | 432,439 |
C12.12(C2×C3⋊S3) = C33⋊13SD16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.12(C2xC3:S3) | 432,440 |
C12.13(C2×C3⋊S3) = C33⋊16SD16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.13(C2xC3:S3) | 432,443 |
C12.14(C2×C3⋊S3) = C33⋊17SD16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 72 | | C12.14(C2xC3:S3) | 432,444 |
C12.15(C2×C3⋊S3) = C33⋊6Q16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.15(C2xC3:S3) | 432,445 |
C12.16(C2×C3⋊S3) = C33⋊8Q16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.16(C2xC3:S3) | 432,447 |
C12.17(C2×C3⋊S3) = C33⋊15D8 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.17(C2xC3:S3) | 432,507 |
C12.18(C2×C3⋊S3) = C33⋊24SD16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.18(C2xC3:S3) | 432,508 |
C12.19(C2×C3⋊S3) = C33⋊27SD16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.19(C2xC3:S3) | 432,509 |
C12.20(C2×C3⋊S3) = C33⋊15Q16 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 432 | | C12.20(C2xC3:S3) | 432,510 |
C12.21(C2×C3⋊S3) = S3×C32⋊4Q8 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.21(C2xC3:S3) | 432,660 |
C12.22(C2×C3⋊S3) = D12⋊(C3⋊S3) | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 72 | | C12.22(C2xC3:S3) | 432,662 |
C12.23(C2×C3⋊S3) = C12.39S32 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 72 | | C12.23(C2xC3:S3) | 432,664 |
C12.24(C2×C3⋊S3) = C32⋊9(S3×Q8) | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 72 | | C12.24(C2xC3:S3) | 432,666 |
C12.25(C2×C3⋊S3) = C12.57S32 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 144 | | C12.25(C2xC3:S3) | 432,668 |
C12.26(C2×C3⋊S3) = C12.58S32 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 72 | | C12.26(C2xC3:S3) | 432,669 |
C12.27(C2×C3⋊S3) = C62.100D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.27(C2xC3:S3) | 432,725 |
C12.28(C2×C3⋊S3) = Q8×C33⋊C2 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.28(C2xC3:S3) | 432,726 |
C12.29(C2×C3⋊S3) = (Q8×C33)⋊C2 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C12 | 216 | | C12.29(C2xC3:S3) | 432,727 |
C12.30(C2×C3⋊S3) = C33⋊7D8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.30(C2xC3:S3) | 432,437 |
C12.31(C2×C3⋊S3) = C33⋊14SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.31(C2xC3:S3) | 432,441 |
C12.32(C2×C3⋊S3) = C33⋊15SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.32(C2xC3:S3) | 432,442 |
C12.33(C2×C3⋊S3) = C33⋊7Q16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.33(C2xC3:S3) | 432,446 |
C12.34(C2×C3⋊S3) = (C3×D12)⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.34(C2xC3:S3) | 432,661 |
C12.35(C2×C3⋊S3) = C3⋊S3×Dic6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.35(C2xC3:S3) | 432,663 |
C12.36(C2×C3⋊S3) = C12.40S32 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.36(C2xC3:S3) | 432,665 |
C12.37(C2×C3⋊S3) = S3×C32⋊4C8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.37(C2xC3:S3) | 432,430 |
C12.38(C2×C3⋊S3) = C3⋊S3×C3⋊C8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.38(C2xC3:S3) | 432,431 |
C12.39(C2×C3⋊S3) = C12.69S32 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.39(C2xC3:S3) | 432,432 |
C12.40(C2×C3⋊S3) = C33⋊7M4(2) | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.40(C2xC3:S3) | 432,433 |
C12.41(C2×C3⋊S3) = C33⋊8M4(2) | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.41(C2xC3:S3) | 432,434 |
C12.42(C2×C3⋊S3) = C33⋊9M4(2) | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.42(C2xC3:S3) | 432,435 |
C12.43(C2×C3⋊S3) = C12.73S32 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.43(C2xC3:S3) | 432,667 |
C12.44(C2×C3⋊S3) = He3⋊7D8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.44(C2xC3:S3) | 432,192 |
C12.45(C2×C3⋊S3) = He3⋊9SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.45(C2xC3:S3) | 432,193 |
C12.46(C2×C3⋊S3) = He3⋊11SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.46(C2xC3:S3) | 432,196 |
C12.47(C2×C3⋊S3) = He3⋊7Q16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | 6 | C12.47(C2xC3:S3) | 432,197 |
C12.48(C2×C3⋊S3) = D4×He3⋊C2 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 36 | 6 | C12.48(C2xC3:S3) | 432,390 |
C12.49(C2×C3⋊S3) = C62.16D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.49(C2xC3:S3) | 432,391 |
C12.50(C2×C3⋊S3) = Q8×He3⋊C2 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.50(C2xC3:S3) | 432,394 |
C12.51(C2×C3⋊S3) = He3⋊5D4⋊C2 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.51(C2xC3:S3) | 432,395 |
C12.52(C2×C3⋊S3) = C3×C32⋊7D8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.52(C2xC3:S3) | 432,491 |
C12.53(C2×C3⋊S3) = C3×C32⋊9SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.53(C2xC3:S3) | 432,492 |
C12.54(C2×C3⋊S3) = C3×C32⋊11SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.54(C2xC3:S3) | 432,493 |
C12.55(C2×C3⋊S3) = C3×C32⋊7Q16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.55(C2xC3:S3) | 432,494 |
C12.56(C2×C3⋊S3) = C3×C12.D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 72 | | C12.56(C2xC3:S3) | 432,715 |
C12.57(C2×C3⋊S3) = C3×Q8×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.57(C2xC3:S3) | 432,716 |
C12.58(C2×C3⋊S3) = C3×C12.26D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C12 | 144 | | C12.58(C2xC3:S3) | 432,717 |
C12.59(C2×C3⋊S3) = C24.D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.59(C2xC3:S3) | 432,168 |
C12.60(C2×C3⋊S3) = C24⋊D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.60(C2xC3:S3) | 432,171 |
C12.61(C2×C3⋊S3) = C72⋊1S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.61(C2xC3:S3) | 432,172 |
C12.62(C2×C3⋊S3) = C2×C12.D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.62(C2xC3:S3) | 432,380 |
C12.63(C2×C3⋊S3) = C2×C36⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.63(C2xC3:S3) | 432,382 |
C12.64(C2×C3⋊S3) = C33⋊21SD16 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.64(C2xC3:S3) | 432,498 |
C12.65(C2×C3⋊S3) = C33⋊12D8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.65(C2xC3:S3) | 432,499 |
C12.66(C2×C3⋊S3) = C33⋊12Q16 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.66(C2xC3:S3) | 432,500 |
C12.67(C2×C3⋊S3) = C2×C33⋊8Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.67(C2xC3:S3) | 432,720 |
C12.68(C2×C3⋊S3) = C8×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.68(C2xC3:S3) | 432,169 |
C12.69(C2×C3⋊S3) = C72⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.69(C2xC3:S3) | 432,170 |
C12.70(C2×C3⋊S3) = C2×C36.S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.70(C2xC3:S3) | 432,178 |
C12.71(C2×C3⋊S3) = C36.69D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.71(C2xC3:S3) | 432,179 |
C12.72(C2×C3⋊S3) = C2×C4×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.72(C2xC3:S3) | 432,381 |
C12.73(C2×C3⋊S3) = C36.70D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.73(C2xC3:S3) | 432,383 |
C12.74(C2×C3⋊S3) = C8×C33⋊C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.74(C2xC3:S3) | 432,496 |
C12.75(C2×C3⋊S3) = C33⋊15M4(2) | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.75(C2xC3:S3) | 432,497 |
C12.76(C2×C3⋊S3) = C2×C33⋊7C8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.76(C2xC3:S3) | 432,501 |
C12.77(C2×C3⋊S3) = C33⋊18M4(2) | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.77(C2xC3:S3) | 432,502 |
C12.78(C2×C3⋊S3) = C62.160D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.78(C2xC3:S3) | 432,723 |
C12.79(C2×C3⋊S3) = He3⋊7SD16 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 72 | 6 | C12.79(C2xC3:S3) | 432,175 |
C12.80(C2×C3⋊S3) = He3⋊5D8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 72 | 6 | C12.80(C2xC3:S3) | 432,176 |
C12.81(C2×C3⋊S3) = He3⋊5Q16 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 144 | 6 | C12.81(C2xC3:S3) | 432,177 |
C12.82(C2×C3⋊S3) = C2×He3⋊4Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.82(C2xC3:S3) | 432,384 |
C12.83(C2×C3⋊S3) = C2×He3⋊5D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 72 | | C12.83(C2xC3:S3) | 432,386 |
C12.84(C2×C3⋊S3) = C3×C24⋊2S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.84(C2xC3:S3) | 432,482 |
C12.85(C2×C3⋊S3) = C3×C32⋊5D8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.85(C2xC3:S3) | 432,483 |
C12.86(C2×C3⋊S3) = C3×C32⋊5Q16 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.86(C2xC3:S3) | 432,484 |
C12.87(C2×C3⋊S3) = C6×C32⋊4Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.87(C2xC3:S3) | 432,710 |
C12.88(C2×C3⋊S3) = C8×He3⋊C2 | central extension (φ=1) | 72 | 3 | C12.88(C2xC3:S3) | 432,173 |
C12.89(C2×C3⋊S3) = He3⋊6M4(2) | central extension (φ=1) | 72 | 6 | C12.89(C2xC3:S3) | 432,174 |
C12.90(C2×C3⋊S3) = C2×He3⋊4C8 | central extension (φ=1) | 144 | | C12.90(C2xC3:S3) | 432,184 |
C12.91(C2×C3⋊S3) = He3⋊8M4(2) | central extension (φ=1) | 72 | 6 | C12.91(C2xC3:S3) | 432,185 |
C12.92(C2×C3⋊S3) = C2×C4×He3⋊C2 | central extension (φ=1) | 72 | | C12.92(C2xC3:S3) | 432,385 |
C12.93(C2×C3⋊S3) = C62.47D6 | central extension (φ=1) | 72 | 6 | C12.93(C2xC3:S3) | 432,387 |
C12.94(C2×C3⋊S3) = C3⋊S3×C24 | central extension (φ=1) | 144 | | C12.94(C2xC3:S3) | 432,480 |
C12.95(C2×C3⋊S3) = C3×C24⋊S3 | central extension (φ=1) | 144 | | C12.95(C2xC3:S3) | 432,481 |
C12.96(C2×C3⋊S3) = C6×C32⋊4C8 | central extension (φ=1) | 144 | | C12.96(C2xC3:S3) | 432,485 |
C12.97(C2×C3⋊S3) = C3×C12.58D6 | central extension (φ=1) | 72 | | C12.97(C2xC3:S3) | 432,486 |
C12.98(C2×C3⋊S3) = C3×C12.59D6 | central extension (φ=1) | 72 | | C12.98(C2xC3:S3) | 432,713 |